Ana María Ornstein
Instituto de Biología y Medicina Experimental
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana María Ornstein.
Endocrinology | 2010
Isabel García-Tornadú; Ana María Ornstein; Astrid Chamson-Reig; Michael B. Wheeler; David J. Hill; Edith Arany; Marcelo Rubinstein; Damasia Becu-Villalobos
The relationship between antidopaminergic drugs and glucose has not been extensively studied, even though chronic neuroleptic treatment causes hyperinsulinemia in normal subjects or is associated with diabetes in psychiatric patients. We sought to evaluate dopamine D2 receptor (D2R) participation in pancreatic function. Glucose homeostasis was studied in D2R knockout mice (Drd2(-/-)) mice and in isolated islets from wild-type and Drd2(-/-) mice, using different pharmacological tools. Pancreas immunohistochemistry was performed. Drd2(-/-) male mice exhibited an impairment of insulin response to glucose and high fasting glucose levels and were glucose intolerant. Glucose intolerance resulted from a blunted insulin secretory response, rather than insulin resistance, as shown by glucose-stimulated insulin secretion tests (GSIS) in vivo and in vitro and by a conserved insulin tolerance test in vivo. On the other hand, short-term treatment with cabergoline, a dopamine agonist, resulted in glucose intolerance and decreased insulin response to glucose in wild-type but not in Drd2(-/-) mice; this effect was partially prevented by haloperidol, a D2R antagonist. In vitro results indicated that GSIS was impaired in islets from Drd2(-/-) mice and that only in wild-type islets did dopamine inhibit GSIS, an effect that was blocked by a D2R but not a D1R antagonist. Finally, immunohistochemistry showed a diminished pancreatic beta-cell mass in Drd2(-/-) mice and decreased beta-cell replication in 2-month-old Drd2(-/-) mice. Pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops.
Veterinary Parasitology | 2011
A.F. Perri; Miguel Eduardo Mejía; N. Licoff; L. Lazaro; M.M. Miglierina; Ana María Ornstein; Damasia Becu-Villalobos; I.M. Lacau-Mengido
Parasitism in cattle is known to impair growth and development. Recent findings suggest that productivity of adult animals is also affected, but little is known about the physiological mechanisms involved. Furthermore, development of nematode resistance to drugs makes imperative the search of management practices that avoid whole herd treatment. We undertook an epidemiological and endocrine study in a grass based dairy farm in Argentina to study the effect of parasites on milk production and the underlying mechanisms involved, and identify individual animals that would benefit from antiparasitic treatment. All the cows in the dairy were followed monthly for egg parasite output in feces. Samples were cultured for genera determination. Milk production and reproductive results were recorded and periodical bleedings for hormone determination were performed. Nematode egg output (EPG) was maximal in late Summer and Autumn and minimal in Spring in coincidence with the Ostertagia inhibition-disinhibition cycle as this genus had the highest prevalence in all the study. The highest proportion of positive samples was found in the high producing herd and maximal counts were found in the peripartal period. Milk production did not correlate with EPG mean values but, when cows were grouped by EPG positivity around parturition, a significant difference in total milk production between EPG null and positive cows was observed. Positive cows produced 7%, 12% or 15% less milk than null EPG cows, depending on the sampling month/s chosen for classification. The highest difference was seen when both prepartum and postpartum samples were taken into account. No difference in lactation length and a marginal effect on partum to first service interval were encountered. Endocrine studies revealed a decrease in serum growth hormone (GH), type I insulin-like growth factor (IGF-I) and prolactin during lactation in cows with positive EPG in the first postpartum sample with respect to null EPG cows at that time. GH levels decreased and prolactin and IGF-I levels increased in both groups of cows from month 0 to 6 in milk. Serum insulin levels remained stable throughout lactation and were similar in both groups of cows. In conclusion, EPG around parturition may be a useful tool for identifying cows that will have a decrease in productivity due to parasite effects and would possibly benefit from an antiparasitic treatment. Besides, our results suggest that detrimental effect of parasites on milk production may be mediated by GH, IGF-I and prolactin serum levels.
Journal of Pharmacology and Experimental Therapeutics | 2011
Guillermina M. Luque; María Inés Pérez-Millán; Ana María Ornstein; Carolina Cristina; Damasia Becu-Villalobos
Prolactin-secreting adenomas are the most frequent type among pituitary tumors, and pharmacological therapy with dopamine agonists remains the mainstay of treatment. But some adenomas are resistant, and a decrease in the number or function of dopamine D2 receptors (D2Rs) has been described in these cases. D2R knockout [Drd2(−/−)] mice have chronic hyperprolactinemia and pituitary hyperplasia and provide an experimental model for dopamine agonist-resistant prolactinomas. We described previously that disruption of D2Rs increases vascular endothelial growth factor (VEGF) expression. We therefore designed two strategies of antiangiogenesis using prolactinomas generated in Drd2(−/−) female mice: direct intra-adenoma mVEGF R1 (Flt-1)/Fc chimera (VEGF-TRAP) injection for 3 weeks [into subcutaneously transplanted pituitaries from Drd2(−/−) mice] and systemic VEGF neutralization with the specific monoclonal antibody G6-31. Both strategies resulted in substantial decrease of prolactin content and lactotrope area, and a reduction in tumor size was observed in in situ prolactinomas. There were significant decreases in vascularity, evaluated by cluster of differentiation molecule 31 vessel staining, and proliferation (proliferating cell nuclear antigen staining) in response to both anti-VEGF treatments. These data demonstrate that the antiangiogenic approach was effective in inhibiting the growth of in situ dopamine-resistant prolactinomas as well as in the transplanted adenomas. No differences in VEGF protein expression were observed after either anti-VEGF treatment, and, although serum VEGF was increased in G6-31-treated mice, pituitary activation of the VEGF receptor 2 signaling pathway was reduced. Our results indicate that, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF might contribute to adequate vascular supply and represent a supplementary therapeutic target in dopamine agonist-resistant prolactinomas.
Neuroendocrinology | 2010
Isabel García-Tornadú; Maria Inés Perez-Millan; Victoria Recouvreux; Maria Cecilia Ramirez; Guillermina M. Luque; Gabriela Sofia Risso; Ana María Ornstein; Carolina Cristina; Graciela Díaz-Torga; Damasia Becu-Villalobos
Dopamine D2 receptor (D2R) participation in prolactin regulation is well documented, but the role of D2Rs in the control of other hormones involved in growth, food intake and glucose metabolism has not been extensively studied. The study of D2R knockout mice (Drd2–/–) puts forward new insights into the role of the D2R in growth hormone (GH)-releasing hormone-GH regulation, peptides involved in food intake, glucose homeostasis, as well as in prolactinoma development. The expected phenotype of chronic hyperprolactinemia and prolactinoma development was found in the Drd2–/– mouse, and this model constitutes a valuable tool in the study of dopamine-resistant prolactinomas. Unexpectedly, these mice were growth retarded, and the importance of functional hypothalamic D2Rs in the neonatal period was revealed. In the Drd2–/– mouse there was a failure of high neonatal GH levels and therefore the expansion of pituitary somatotropes was permanently altered. These mice also had increased food intake, and a sexually dimorphic participation of the D2R in food intake regulation is suggested. The effect described is probably secondary to D2R regulation of prolactin secretion. Furthermore, the negative modulation of D2Rs on α-melanocyte-stimulating hormone release and positive action on the hypothalamic expression of orexins reveals the complex D2R regulation of food intake. Finally, pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development in the Drd2–/– mouse may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops. These results highlight the complex endocrine actions of the D2Rs at different levels, hypothalamus, pituitary or pancreas, which function to improve fitness, reproductive success and survival.
Journal of Endocrinology | 2010
María Cecilia Ramírez; Guillermina M. Luque; Ana María Ornstein; Damasia Becu-Villalobos
Abnormal exposure to steroid hormones within a critical developmental period elicits permanent alterations in female reproductive physiology in rodents, but the impact on the female GH axis and the underlying sexual differences in hepatic enzymes have not been described in detail. We have investigated the effect of neonatal androgenization of female mice (achieved by s.c. injection of 100 μg testosterone propionate (TP) on the day of birth: TP females) on the GHRH-somatostatin-GH axis and downstream GH targets, which included female and male predominant liver enzymes and secreted proteins. At 4 months of age, an organizational effect of neonatal testosterone was evidenced on hypothalamic Ghrh mRNA level but not on somatostatin (stt) mRNA level. Ghrh mRNA levels were higher in males than in females, but not in TP females. Increased expression in TP females correlated with increased pituitary GH content and somatotrope population, increased serum and liver IGF-I concentration, and ultimately higher body weight. Murine urinary proteins (MUPs) that were excreted at higher levels in male urine, and whose expression requires pulsatile occupancy of liver GH receptors, were not modified in TP females and neither was liver Mup 1/2/6/8 mRNA expression. Furthermore, a male predominant liver gene (Cyp2d9) was not masculinized in TP females either, whereas two female predominant genes (Cyp2b9 and Cyp2a4) were defeminized. These data support the hypothesis that neonatal steroid exposure contributes to the remodeling of the GH axis and defeminization of hepatic steroid-metabolizing enzymes, which may compromise liver physiology.
International Journal of Endocrinology | 2014
Carolina Cristina; Guillermina M. Luque; Gianina Demarchi; Felicitas Lopez Vicchi; Lautaro Zubeldía-Brenner; Maria Ines Perez Millan; Sofia Perrone; Ana María Ornstein; I.M. Lacau-Mengido; Silvia Inés Berner; Damasia Becu-Villalobos
The role of angiogenesis in pituitary tumor development has been questioned, as pituitary tumors have been usually found to be less vascularized than the normal pituitary tissue. Nevertheless, a significantly higher degree of vasculature has been shown in invasive or macropituitary prolactinomas when compared to noninvasive and microprolactinomas. Many growth factors and their receptors are involved in pituitary tumor development. For example, VEGF, FGF-2, FGFR1, and PTTG, which give a particular vascular phenotype, are modified in human and experimental pituitary adenomas of different histotypes. In particular, vascular endothelial growth factor, VEGF, the central mediator of angiogenesis in endocrine glands, was encountered in experimental and human pituitary tumors at different levels of expression and, in particular, was higher in dopamine agonist resistant prolactinomas. Furthermore, several anti-VEGF techniques lowered tumor burden in human and experimental pituitary adenomas. Therefore, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF, making permeable pituitary endothelia, might contribute to adequate temporal vascular supply and mechanisms other than endothelial cell proliferation. The study of angiogenic factor expression in aggressive prolactinomas with resistance to dopamine agonists will yield important data in the search of therapeutical alternatives.
Endocrinology | 2013
M. Victoria Recouvreux; Lara Lapyckyj; M. Andrea Camilletti; M. Clara Guida; Ana María Ornstein; Daniel B. Rifkin; Damasia Becu-Villalobos; Graciela Díaz-Torga
Dopamine and estradiol interact in the regulation of lactotroph cell proliferation and prolactin secretion. Ablation of the dopamine D2 receptor gene (Drd2(-/-)) in mice leads to a sexually dimorphic phenotype of hyperprolactinemia and pituitary hyperplasia, which is stronger in females. TGF-β1 is a known inhibitor of lactotroph proliferation. TGF-β1 is regulated by dopamine and estradiol, and it is usually down-regulated in prolactinoma experimental models. To understand the role of TGF-β1 in the gender-specific development of prolactinomas in Drd2(-/-) mice, we compared the expression of different components of the pituitary TGF-β1 system, including active cytokine content, latent TGF-β-binding protein isoforms, and possible local TGF-β1 activators, in males and females in this model. Furthermore, we evaluated the effects of dopamine and estradiol administration to elucidate their role in TGF-β1 system regulation. The expression of active TGF-β1, latent TGF-β-binding protein isoforms, and several putative TGF-β1 activators evaluated was higher in male than in female mouse pituitary glands. However, Drd2(-/-) female mice were more sensitive to the decrease in active TGF-β1 content, as reflected by the down-regulation of TGF-β1 target genes. Estrogen and dopamine caused differential regulation of several components of the TGF-β1 system. In particular, we found sex- and genotype- dependent regulation of active TGF-β1 content and a similar expression pattern for 2 of the putative TGF-β1 activators, thrombospondin-1 and kallikrein-1, suggesting that these proteins could mediate TGF-β1 activation elicited by dopamine and estradiol. Our results indicate that (1) the loss of dopaminergic tone affects the pituitary TGF-β1 system more strongly in females than in males, (2) males express higher levels of pituitary TGF-β1 system components including active cytokine, and (3) estradiol negatively controls most of the components of the system. Because TGF-β1 inhibits lactotroph proliferation, we propose that the higher levels of the TGF-β1 system in males could protect or delay the development of prolactinomas in Drd2(-/-) male mice.
Endocrinology | 2015
Maria Cecilia Ramirez; Ana María Ornstein; Guillermina M. Luque; Maria Ines Perez Millan; Isabel García-Tornadú; Marcelo Rubinstein; Damasia Becu-Villalobos
Liver sexual gene dimorphism, which depends mainly on specific patterns of GH secretion, may underlie differential susceptibility to some liver diseases. Because GH and prolactin secretion are regulated by dopaminergic pathways, we studied the participation of brain and lactotrope dopamine 2 receptors (D2Rs) on liver gene sexual dimorphism, to explore a link between the brain and liver gene expression. We used global D2R knockout mice (Drd2(-/-)) and conducted a functional dissection strategy based on cell-specific Drd2 inactivation in neurons (neuroDrd2KO) or pituitary lactotropes. Disruption of neuronal D2Rs (which impaired the GH axis) decreased most of male or female-predominant class I liver genes and increased female-predominant class II genes in males, consistent with the positive (class I) or negative (class II) regulation of these genes by GH. Notably, sexual dimorphism was lost for class I and II genes in neuroDrd2KO mice. Disruption of lactotrope D2Rs did not modify class I or II genes in either sex, because GH axis was preserved. But surprisingly, 1 class II gene (Prlr) and female-predominant class I genes were markedly up-regulated in lacDrd2KO females, pointing to direct or indirect effects of prolactin in the regulation of selected female-predominant liver genes. This suggestion was strengthened in the hyperprolactinemic Drd2(-/-) female mouse, in which increased expression of the same 4 liver genes was observed, despite a decreased GH axis. We hereby demonstrate endocrine-mediated D2R actions on sexual dimorphic liver gene expression, which may be relevant during chronic dopaminergic medications in psychiatric disease.
American Journal of Physiology-endocrinology and Metabolism | 2016
Guillermina M. Luque; Felicitas Lopez-Vicchi; Ana María Ornstein; Belén Brie; Catalina De Winne; Esteban Fiore; Maria Inés Perez-Millan; Guillermo Mazzolini; Marcelo Rubinstein; Damasia Becu-Villalobos
We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.
Molecular and Cellular Endocrinology | 2014
Maria Cecilia Ramirez; Lautaro Zubeldía-Brenner; Victoria Wargon; Ana María Ornstein; Damasia Becu-Villalobos
Neonatal androgenization masculinizes the GH axis and thus may impact on liver gene regulation. Neonatal testosterone administration to female mice decreased (defeminized) female predominant GH-dependent liver gene expression (Hnf6, Adh1, Prlr, Cyp3a41) and did not modify male predominant genes (Cyp7b1, Cyp4a12, Slp). Female predominance of Cis mRNA, an inhibitor of episodic GH signaling pathway, was unaltered. At birth, Cyp7b1 promoter exhibited a higher methylation status in female livers, while the Hnf6 promoter was equally methylated in both sexes; no differences in gene expression were detected at this age. In adulthood, consistent with sex specific predominance, lower methylation status was determined for the Cyp7b1 promoter in males, and for the Hnf6 promoter in females, and this last difference was prevented by neonatal androgenization. Therefore, early steroid treatment or eventually endocrine disruptor exposure may alter methylation status and sexual dimorphic expression of liver genes, and consequently modify liver physiology in females.