Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carolina Cristina is active.

Publication


Featured researches published by Carolina Cristina.


Journal of Pharmacology and Experimental Therapeutics | 2011

Inhibitory Effects of Antivascular Endothelial Growth Factor Strategies in Experimental Dopamine-Resistant Prolactinomas

Guillermina M. Luque; María Inés Pérez-Millán; Ana María Ornstein; Carolina Cristina; Damasia Becu-Villalobos

Prolactin-secreting adenomas are the most frequent type among pituitary tumors, and pharmacological therapy with dopamine agonists remains the mainstay of treatment. But some adenomas are resistant, and a decrease in the number or function of dopamine D2 receptors (D2Rs) has been described in these cases. D2R knockout [Drd2(−/−)] mice have chronic hyperprolactinemia and pituitary hyperplasia and provide an experimental model for dopamine agonist-resistant prolactinomas. We described previously that disruption of D2Rs increases vascular endothelial growth factor (VEGF) expression. We therefore designed two strategies of antiangiogenesis using prolactinomas generated in Drd2(−/−) female mice: direct intra-adenoma mVEGF R1 (Flt-1)/Fc chimera (VEGF-TRAP) injection for 3 weeks [into subcutaneously transplanted pituitaries from Drd2(−/−) mice] and systemic VEGF neutralization with the specific monoclonal antibody G6-31. Both strategies resulted in substantial decrease of prolactin content and lactotrope area, and a reduction in tumor size was observed in in situ prolactinomas. There were significant decreases in vascularity, evaluated by cluster of differentiation molecule 31 vessel staining, and proliferation (proliferating cell nuclear antigen staining) in response to both anti-VEGF treatments. These data demonstrate that the antiangiogenic approach was effective in inhibiting the growth of in situ dopamine-resistant prolactinomas as well as in the transplanted adenomas. No differences in VEGF protein expression were observed after either anti-VEGF treatment, and, although serum VEGF was increased in G6-31-treated mice, pituitary activation of the VEGF receptor 2 signaling pathway was reduced. Our results indicate that, even though the role of angiogenesis in pituitary adenomas is contentious, VEGF might contribute to adequate vascular supply and represent a supplementary therapeutic target in dopamine agonist-resistant prolactinomas.


Endocrine Pathology | 2010

VEGF and CD31 Association in Pituitary Adenomas

Carolina Cristina; María Inés Pérez-Millán; Guillermina M. Luque; Raúl Ariel Dulce; Gustavo Sevlever; Silvia Inés Berner; Damasia Becu-Villalobos

Pituitary tumors are usually less vascularized than the normal pituitary, and the role of angiogenesis in these adenomas is contentious. Appraisal of microvascular density and expression of the potent angiogenic vascular endothelial growth factor (VEGF) by immunohistochemistry has yielded controversial results, as a broad spectrum of immunostaining can be found. We determined the protein expression of VEGF and CD31, an endothelial marker, in a series of 56 surgically removed pituitary adenomas using Western blot assay. Prolactinomas had higher VEGF protein expression compared to nonfunctioning or ACTH- and GH-secreting adenomas, while CD31 was similar in the different adenoma histotypes. VEGF and CD31 were not affected by sex, age, years of adenoma evolution, or proliferation rate (Ki67 and PCNA) for all adenoma types. Only in nonfunctioning adenomas CD31 concentration increased significantly with age. There was a positive correlation between CD31 and VEGF expression when all adenoma histotypes were considered, or when prolactinomas and nonfunctioning adenomas were evaluated separately. The positive association of VEGF and CD31 expression suggests the participation of angiogenesis in adenoma development, while epithelial cell proliferation in pituitary tumors is not directly related to VEGF or CD31 expression, and other factors, such as primary genetic alterations may be involved.


Neuroendocrinology | 2010

New Insights into the Endocrine and Metabolic Roles of Dopamine D2 Receptors Gained from the Drd2–/– Mouse

Isabel García-Tornadú; Maria Inés Perez-Millan; Victoria Recouvreux; Maria Cecilia Ramirez; Guillermina M. Luque; Gabriela Sofia Risso; Ana María Ornstein; Carolina Cristina; Graciela Díaz-Torga; Damasia Becu-Villalobos

Dopamine D2 receptor (D2R) participation in prolactin regulation is well documented, but the role of D2Rs in the control of other hormones involved in growth, food intake and glucose metabolism has not been extensively studied. The study of D2R knockout mice (Drd2–/–) puts forward new insights into the role of the D2R in growth hormone (GH)-releasing hormone-GH regulation, peptides involved in food intake, glucose homeostasis, as well as in prolactinoma development. The expected phenotype of chronic hyperprolactinemia and prolactinoma development was found in the Drd2–/– mouse, and this model constitutes a valuable tool in the study of dopamine-resistant prolactinomas. Unexpectedly, these mice were growth retarded, and the importance of functional hypothalamic D2Rs in the neonatal period was revealed. In the Drd2–/– mouse there was a failure of high neonatal GH levels and therefore the expansion of pituitary somatotropes was permanently altered. These mice also had increased food intake, and a sexually dimorphic participation of the D2R in food intake regulation is suggested. The effect described is probably secondary to D2R regulation of prolactin secretion. Furthermore, the negative modulation of D2Rs on α-melanocyte-stimulating hormone release and positive action on the hypothalamic expression of orexins reveals the complex D2R regulation of food intake. Finally, pancreatic D2Rs inhibit glucose-stimulated insulin release. Lack of dopaminergic inhibition throughout development in the Drd2–/– mouse may exert a gradual deteriorating effect on insulin homeostasis, so that eventually glucose intolerance develops. These results highlight the complex endocrine actions of the D2Rs at different levels, hypothalamus, pituitary or pancreas, which function to improve fitness, reproductive success and survival.


Molecular Cancer | 2007

PTTG expression in different experimental and human prolactinomas in relation to dopaminergic control of lactotropes

Carolina Cristina; Graciela Díaz-Torga; Rodolfo G. Goya; Sham S. Kakar; María Inés Pérez-Millán; Vanessa Q. Passos; Daniel Giannella-Neto; Marcello D. Bronstein; Damasia Becu-Villalobos

BackgroundPituitary tumor transforming gene (pttg) is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Nevertheless, its expression in prolactinomas and its relation with the pituitary dopamine receptor 2 (D2R) are not well defined. We sought to determine the pituitary level of pttg in three different experimental models of prolactinomas with altered dopaminergic control of the pituitary: the dopaminergic D2R knockout female mouse, the estrogen-treated rat, and the senescent female rat. These three models shared the characteristics of increased pituitary weight, hyperprolactinemia, lactotrope hyperplasia and reduced or absent dopaminergic action at the pituitary level. We also studied samples from human macroprolactinomas, which were characterized as responsive or resistant to dopamine agonist therapy.ResultsWhen compared to female wild-type mice, pituitaries from female D2R knockout mice had decreased PTTG concentration, while no difference in pttg mRNA level was found. In senescent rats no difference in pituitary PTTG protein expression was found when compared to young rats. But, in young female rats treated with a synthetic estrogen (Diethylstylbestrol, 20 mg) PTTG protein expression was enhanced (P = 0.029). Therefore, in the three experimental models of prolactinomas, pituitary size was increased and there was hyperprolactinemia, but PTTG levels followed different patterns.Patients with macroprolactinomas were divided in those in which dopaminergic therapy normalized or failed to normalize prolactin levels (responsive and resistant, respectively). When pituitary pttg mRNA level was analyzed in these macroprolactinomas, no differences were found.We next analyzed estrogen action at the pituitary by measuring pituitary estrogen receptor α levels. The D2R knockout female mice have low estrogen levels and in accordance, pituitary estrogen receptors were increased (P = 0.047). On the other hand, in senescent rats estrogen levels were slightly though not significantly higher, and estrogen receptors were similar between groups. The estrogen-treated rats had high pharmacological levels of the synthetic estrogen, and estrogen receptors were markedly lower than in controls (P < 0.0001). Finally, in patients with dopamine resistant or responsive prolactinomas no significant differences in estrogen receptor α levels were found. Therefore, pituitary PTTG was increased only if estrogen action was increased, which correlated with a decrease in pituitary estrogen receptor level.ConclusionWe conclude that PTTG does not correlate with prolactin levels or tumor size in animal models of prolactinoma, and its pituitary content is not related to a decrease in dopaminergic control of the lactotrope, but may be influenced by estrogen action at the pituitary level. Therefore it is increased only in prolactinomas generated by estrogen treatment, and not in prolactinomas arising from deficient dopamine control, or in dopamine resistant compared with dopamine responsive human prolactinomas. These results are important in the search for reliable prognostic indicators for patients with pituitary adenomas which will make tumor-specific therapy possible, and help to elucidate the poorly understood phenomenon of pituitary tumorigenesis.


Cellular and Molecular Neurobiology | 2002

Angiotensin and calcium signaling in the pituitary and hypothalamus.

Cecilia Suárez; Isabel García Tornadú; Carolina Cristina; Jorge Vela; Arturo González Iglesias; Carlos Libertun; Graciela Díaz-Torga; Damasia Becu-Villalobos

Abstract1) In the rat pituitary, angiotensin type 1B receptors (AT1B) are located in lactotrophs and corticotrophs.2) Activation of AT1B receptors are coupled to Gq/11 (Guanine protein coupled receptor, or GPCR); they increase phospholipase β C (PLC) activity resulting in inositol 1,4,5 triphosphate (InsP3) and diacylglycerol (DAG) formation. A biphasic increase in [Ca2+]itriggered by InsP3 and DAG ensues.3) As many GPCRs, AT1B pituitary receptors rapidly desensitize.4) This was observed in the generation of InsP3, the mobilization of intracellular Ca2+, and in prolactin release. Both homologous and heterologous desensitization was evidenced.5) Desensitization of the angiotensin II type 1 (AT1) receptor in the pituitary shares similarities and differences with endogenously expressed or transfected AT1 receptors in different cell types.6) In the pituitary hyperplasia generated by chronic estrogen treatment there was desensitization or alteration in angiotensin II (Ang II) evoked intracellular Ca2+ increase, InsP3 generation, and prolactin release. This correlates with a downregulation of AT1 receptors.7) In particular, in hyperplastic cells Ang II failed to evoke a transient acute peak in [Ca2+]i, which was replaced by a persistent plateau phase of [Ca2+]i increase.8) Different calcium channels participate in Ang II induced [Ca2+]i increase in control and hyperplastic cells. While spike phase in control cells is dependent on intracellular stores sensitive to thapsigargin, in hyperplastic cells plateau increase is dependent on extracellular calcium influx.9) Signal transduction of the AT1 pituitary receptor is greatly modified by hyperplasia, and it may be an important mechanism in the control of the hyperplastic process.10) In the hypothalamus and brain stem there is a predominant expression of AT1A and AT2 mRNA.11) Ang II acts at specific receptors located on neurons in the hypothalamus and brain stem to elicit alterations in blood pressure, fluid intake, and hormone secretion.12) Calcium channels play important roles in the Ang II induced behavioral and endocrine responses.13) Ang II, in physiological concentrations, can activate AT1 receptors to stimulate both Ca2+ release from intracellular stores and Ca2+ influx from the extracellular space to increase [Ca2+]i in polygonal and stellate astroglia of the hypothalamus and brain stem.14) In primary cell culture of neurons from newborn rat hypothalamus and brain stem, it has also been determined that Ang II elicits an AT1 receptor mediated inhibition of delayed rectifier K(+) current and a stimulation of Ca2+ current.15) In primary cell cultures derived from the subfornical organ or the organum vasculosum laminae terminalis of newborn rat pups, Ang II produced a pronounced desensitization of the [Ca2+]i response.16) Hypothalamic and pituitary Ang II systems are involved in different functions, some of which are related. At both levels Ang II signals through [Ca2+]i in a characteristic way.


Oncotarget | 2017

Notch system is differentially expressed and activated in pituitary adenomas of distinct histotype, tumor cell lines and normal pituitaries

Sofia Perrone; Lautaro Zubeldía-Brenner; Elias Gazza; Gianina Demarchi; Leticia Baccarini; Agustin Baricalla; Freya Mertens; Guillermina M. Luque; Hugo Vankelecom; Silvia Inés Berner; Damasia Becu-Villalobos; Carolina Cristina

Pituitary adenomas are among the most frequent intracranial neoplasms and treatment depends on tumor subtype and clinical features. Unfortunately, non responder cases occur, then new molecular targets are needed. Notch system component expression and activation data are scarce in pituitary tumorigenesis, we therefore aimed to characterize Notch system in pituitary tumors of different histotype. In human pituitary adenomas we showed NOTCH1-4 receptors, JAGGED1 ligand and HES1 target gene expression with positive correlations between NOTCH1,2,4 and HES1, and NOTCH3 and JAGGED1 denoting Notch system activation in a subset of tumors. Importantly, NOTCH3 positive cells were higher in corticotropinomas and somatotropinomas compared to non functioning adenomas. In accordance, Notch activation was evidenced in AtT20 tumor corticotropes, with higher levels of NOTCH1-3 active domains, Jagged1 and Hes1 compared to normal pituitary. In the prolactinoma cell lines GH3 and MMQ, in vivo GH3 tumors and normal glands, Notch system activation was lower than in corticotropes. In MMQ cells only the NOTCH2 active domain was increased, whereas NOTCH1 active domain was higher in GH3 tumors. High levels of Jagged1 and Dll1 were found solely in GH3 cells, and Hes1, Hey1 and Hey2 were expressed in a model dependent pattern. Prolactinomas harbored by lacDrd2KO mice expressed high levels of NOTCH1 active domain and reduced Hes1. We show a differential expression of Notch system components in tumoral and normal pituitaries and specific Notch system involvement depending on adenoma histotype, with higher activation in corticotropinomas. These data suggest that targeting Notch pathway may benefit non responder pituitary adenomas.Pituitary adenomas are among the most frequent intracranial neoplasms and treatment depends on tumor subtype and clinical features. Unfortunately, non responder cases occur, then new molecular targets are needed.Notch system component expression and activation data are scarce in pituitary tumorigenesis, we therefore aimed to characterize Notch system in pituitary tumors of different histotype. In human pituitary adenomas we showed NOTCH1-4 receptors, JAGGED1 ligand and HES1 target gene expression with positive correlations between NOTCH1,2,4 and HES1, and NOTCH3 and JAGGED1 denoting Notch system activation in a subset of tumors. Importantly, NOTCH3 positive cells were higher in corticotropinomas and somatotropinomas compared to non functioning adenomas. In accordance, Notch activation was evidenced in AtT20 tumor corticotropes, with higher levels of NOTCH1-3 active domains, Jagged1 and Hes1 compared to normal pituitary.In the prolactinoma cell lines GH3 and MMQ, in vivo GH3 tumors and normal glands, Notch system activation was lower than in corticotropes. In MMQ cells only the NOTCH2 active domain was increased, whereas NOTCH1 active domain was higher in GH3 tumors. High levels of Jagged1 and Dll1 were found solely in GH3 cells, and Hes1, Hey1 and Hey2 were expressed in a model dependent pattern.Prolactinomas harbored by lacDrd2KO mice expressed high levels of NOTCH1 active domain and reduced Hes1.We show a differential expression of Notch system components in tumoral and normal pituitaries and specific Notch system involvement depending on adenoma histotype, with higher activation in corticotropinomas. These data suggest that targeting Notch pathway may benefit non responder pituitary adenomas.


Archive | 2014

Prolactinomas: Role of VEGF, FGF-2 and CD31

María Inés; Pérez Millán; Carolina Cristina; Silvia Inés Berner; Damasia Becu-Villalobos

Pituitary tumors rarely produce metastasis, but cause considerable morbidity and mortality. Each pituitary tumor of clonal origin represents the multifactorial result of failure of different regulatory events where growth and angiogenic factors may play critical roles in hormone secretion and cell proliferation. Prolactinomas, pituitary tumors which secrete prolactin, are generally treated successfully with dopamine agonists, even though a 10–15 % are resistant to this pharmacological therapy.


Endocrinology | 2005

Increased Pituitary Vascular Endothelial Growth Factor-A in Dopaminergic D2 Receptor Knockout Female Mice

Carolina Cristina; Graciela Díaz-Torga; Alberto Baldi; A. Góngora; Marcelo Rubinstein; Malcolm J. Low; Damasia Becu-Villalobos


American Journal of Physiology-endocrinology and Metabolism | 2007

Fibroblast growth factor-2 in hyperplastic pituitaries of D2R knockout female mice

Carolina Cristina; Graciela Díaz-Torga; Adrián Góngora; Maria Clara Guida; María Inés Pérez-Millán; Alberto Baldi; Damasia Becu-Villalobos


American Journal of Physiology-endocrinology and Metabolism | 2004

Upregulation of angiotensin II type 2 receptor expression in estrogen-induced pituitary hyperplasia

Cecilia Suárez; Graciela Díaz-Torga; Arturo E. Gonzalez-Iglesias; Carolina Cristina; Damasia Becu-Villalobos

Collaboration


Dive into the Carolina Cristina's collaboration.

Top Co-Authors

Avatar

Damasia Becu-Villalobos

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Graciela Díaz-Torga

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Hugo Vankelecom

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Guillermina M. Luque

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana María Ornstein

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Freya Mertens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Alberto Baldi

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Cecilia Suárez

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

G Luque

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge