Ana Mijušković
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Mijušković.
Journal of Medicinal Chemistry | 2013
Milos R. Filipovic; Mirjam Eberhardt; Vladimir Prokopovic; Ana Mijušković; Zorana Oreščanin-Dušić; Peter W. Reeh; Ivana Ivanović-Burmazović
Hydrogen sulfide (H2S) has been increasingly recognized as an important signaling molecule that regulates both blood pressure and neuronal activity. Attention has been drawn to its interactions with another gasotransmitter, nitric oxide (NO). Here, we provide evidence that the physiological effects observed upon the application of sodium nitroprusside (SNP) and H2S can be ascribed to the generation of nitroxyl (HNO), which is a direct product of the reaction between SNP and H2S, not a consequence of released NO subsequently reacting with H2S. Intracellular HNO formation has been confirmed, and the subsequent release of calcitonin gene-related peptide from a mouse heart has been demonstrated. Unlike with other thiols, SNP reacts with H2S in the same way as rhodanese, i.e., the cyanide transforms into a thiocyanate. These findings shed new light on how H2S is understood to interact with nitroprusside. Additionally, they offer a new and convenient pharmacological source of HNO for therapeutic purposes.
Nitric Oxide | 2015
Andrea Berenyiova; Marian Grman; Ana Mijušković; Andrej Staško; Anton Misak; Péter Nagy; Elena Ondriasova; Sona Cacanyiova; Vlasta Brezová; Martin Feelisch; Karol Ondrias
The chemical interaction of sodium sulfide (Na2S) with the NO-donor S-nitrosoglutathione (GSNO) has been described to generate new reaction products, including polysulfides and nitrosopersulfide (SSNO(-)) via intermediacy of thionitrous acid (HSNO). The aim of the present work was to investigate the vascular effects of the longer-lived products of the Sulfide/GSNO interaction. Here we show that the products of this reaction relax precontracted isolated rings of rat thoracic aorta and mesenteric artery (but to a lesser degree rat uterus) with a >2-fold potency compared with the starting material, GSNO (50 nM), whereas Na2S and polysulfides have little effect at 1-5 µM. The onset of vasorelaxation of the reaction products was 7-10 times faster in aorta and mesenteric arteries compared with GSNO. Relaxation to GSNO (100-500 nM) was blocked by an inhibitor of soluble guanylyl cyclase, ODQ (0.1 and 10 µM), and by the NO scavenger cPTIO (100 µM), but less affected by prior acidification (pH 2-4), and unaffected by N-acetylcysteine (1 mM) or methemoglobin (20 µM heme). By contrast, relaxation to the Sulfide/GSNO reaction products (100-500 nM based on the starting material) was inhibited to a lesser extent by ODQ, only slightly decreased by cPTIO, more markedly inhibited by methemoglobin and N-acetylcysteine, and abolished by acidification before addition to the organ bath. The reaction mixture was found to generate NO as detected by EPR spectroscopy using N-(dithiocarboxy)-N-methyl-D-glucamine (MGD2)-Fe(2+) as spin trap. In conclusion, the Sufide/GSNO reaction products are faster and more pronounced vasorelaxants than GSNO itself. We conclude that in addition to NO formation from SSNO(-), reaction products other than polysulfides may give rise to nitroxyl (HNO) and be involved in the pronounced relaxation induced by the Sulfide/GSNO cross-talk.
Pharmacological Reports | 2014
Ana Mijušković; Zorana Oreščanin-Dušić; Aleksandra Nikolić-Kokić; Marija Slavić; Mihajlo Spasić; Ivan Spasojevic; Duško Blagojević
BACKGROUND Our aim was to investigate the effect of methanethiol (CH3SH) on contractility of rat uterus and activities of redox-active enzymes, and to compare them with the effect of sodium sulphide (Na2S), a hydrogen sulphide (H2S/HS(-)) donor. METHODS Uteri were isolated from virgin Wistar rats, divided into six groups, controls (untreated uteri allowed to contract spontaneously and in the presence of Ca(2+)(6mM)), CH3SH treated (spontaneously active and Ca(2+) induced) and Na2S treated (spontaneously active and Ca(2+) induced). Underlying antioxidative enzyme activities (superoxide dismutase--SOD, glutathione peroxidase--GSHPx, glutathione reductase--GR) in CH3SH- or Na2S-treated uteri were compared to controls. RESULTS Our experiments showed that CH3SH and Na2S provoked reversible relaxation of both spontaneous and Ca(2+)-induced uterine contractions. The dose-response curves differed in shape, and CH3SH curve was shifted to higher concentration compared to H2S/HS(-). The effects of Na2S fitted sigmoid curve, whereas those of CH3SH fitted linearly. CH3SH provoked increased SOD activity and decreased GR activity. However, Na2S (H2S/HS(-)) provoked an increase in SOD activity exclusively in Ca(2+)-stimulated uteri, while the activity of GSHPx was increased in both types of active uteri. CONCLUSION Our results imply that CH3SH may have a constructive role in the control of muscle function and metabolism. Observed differences between CH3SH and H2S/HS(-) could be attributed to a larger moiety that is present in CH3SH compared to H2S, but they are more likely to be a consequence of the specific actions of HS(-), in relation to its negative charge.
Nutrition Research | 2014
Jelena Nestorov; Alhadi M. Glban; Ana Mijušković; Aleksandra Nikolić-Kokić; Ivana Elaković; Nataša Veličković; Gordana Matić
Increased fructose consumption is correlated with the rising prevalence of obesity, metabolic syndrome, and type 2 diabetes. It is believed that reactive oxygen species contribute to the development and progression of metabolic disturbances, especially those associated with insulin resistance. Dietary fructose produces both pro-oxidative and antioxidative effects, depending upon the experimental conditions, dosage, duration of treatment, and pathophysiological milieu. The effects of fructose overconsumption on young populations, which have an increased risk of developing metabolic disorders in adulthood, have not been fully elucidated. We have previously shown that rats subjected to a long-term fructose-enriched diet immediately after weaning display impaired hepatic insulin sensitivity. In this study, we tested the hypothesis that long-term fructose consumption induces alterations in the redox setting of the liver. Starting from the 21st day after birth, male Wistar rats were maintained for 9 weeks on a standard diet (control) or a fructose-enriched diet that consisted of standard food and 10% fructose solution instead of drinking water. The expression and activity of antioxidant enzymes as well as lipid peroxidation and protein damage markers were measured. The results showed that a fructose-enriched diet led to an increased expression of mitochondrial manganese superoxide dismutase but did not affect antioxidant enzymes activity, lipid peroxidation, thiol content, and the level of protein oxidation. Therefore, our results suggest that the decrease in hepatic insulin sensitivity that was previously observed in rats that were kept on the same diet regime might be attributed to molecular mechanisms other than redox disbalance. A possible fructose-related micronutrient deficiency should be examined.
Journal of Toxicology and Environmental Health | 2016
Aleksandra Nikolić-Kokić; Ana Mijušković; Nikola Tatalović; Jelena Nestorov; Marko Miler; Zorana Oreščanin-Dušić; Milan Nikolic; Verica Milošević; Duško Blagojević; Mihajlo Spasić; Čedo Miljević
ABSTRACT The use of atypical antipsychotic drugs (APD) was reported to be associated with adverse effects on the kidneys. Thus, the aim of this study was to examine whether APD exerted their adverse effects by interfering with the renal antioxidant defense system. Male 3-mo-old Wistar rats were treated for 28 d with ziprasidone (ZIP), clozapine (CLO), or sertindole (SER) using a daily dose recommended for antipsychotic drug therapy. The expression and activities of antioxidant enzymes superoxide dismutase (SOD) type 1 and type 2, catalase (CAT), glutathione reductase (GR), and glutathione S-transferases (GSTs) activity were measured in the kidneys. Changes in the kidneys were also evaluated histologically. Ziprasidone, CLO, and SER reduced renal SOD type 1 and type 2 activities. Decreased CAT activity was observed only in SER-treated rats. An inhibition in GR activity and increased activity of GST was found only after treatment with CLO. Histological analysis showed dilatation of proximal tubules in kidneys with all three drugs. In conclusion, data indicate that redox disturbances may contribute to renal morphologic alterations in proximal tubules in rats treated with all APD.
Nitric Oxide | 2015
Bojana Bolić; Ana Mijušković; Ana Popović-Bijelić; Aleksandra Nikolić-Kokić; Snežana Spasić; Duško Blagojević; Mihajlo Spasić; Ivan Spasojevic
Interactions of hydrogen sulfide (HS(-)/H2S), a reducing signaling species, with superoxide dimutases (SOD) are poorly understood. We applied low-T EPR spectroscopy to examine the effects of HS(-)/H2S and superoxide radical anion O2.- on metallocenters of FeSOD, MnSOD, and CuZnSOD. HS(-)/H2S did not affect FeSOD, whereas active centers of MnSOD and CuZnSOD were open to this agent. Cu(2+) was reduced to Cu(1+), while manganese appears to be released from MnSOD active center. Untreated and O2.- treated FeSOD and MnSOD predominantly show 5 d-electron systems, i.e. Fe(3+) and Mn(2+). Our study provides new details on the mechanisms of (patho)physiological effects of HS(-)/H2S.
Journal of Ethnopharmacology | 2015
Aleksandra Nikolić-Kokić; Zorana Oreščanin-Dušić; Ivan Spasojevic; Marija Slavić; Ana Mijušković; Roman Paškulin; Čedo Miljević; Mihajlo Spasić; Duško Blagojević
ETHNOPHARMACOLOGICAL RELEVANCE Ibogaine is a naturally occurring alkaloid with psychotropic and metabotropic effects, derived from the bark of the root of the West African Tabernanthe iboga plant. The tribes of Kongo basin have been using iboga as a stimulant, for medicinal purposes, and in rite of passage ceremonies, for centuries. Besides, it has been found that this drug has anti-addictive effects. AIM OF THE STUDY Previous studies have demonstrated that ibogaine changed the quantity of ATP and energy related enzymes as well as the activity of antioxidant enzymes in cells thus altering redox equilibrium in a time manner. In this work, the mechanism of its action was further studied by measuring the effects of ibogaine in human erythrocytes in vitro on ATP liberation, membrane fluidity and antioxidant enzymes activity. MATERIALS AND METHODS Heparinized human blood samples were incubated with ibogaine (10 and 20 μM) at 37°C for 1h. Blood plasma was separated by centrifugation and the levels of ATP and uric acid were measured 10 min after the addition of ibogaine using standard kits. The activity of copper-zinc superoxide dismutase (SOD1), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were measured in erythrocytes after incubation period. The stability of SOD1 activity was further tested through in vitro incubation with H2O2 and scanning of its electrophoretic profiles. Membrane fluidity was determined using an electron paramagnetic resonance spin-labelling method. RESULTS Results showed that ibogaine treatment of erythrocytes in vitro increased ATP concentration in the blood plasma without changes in neither erythrocytes membrane fluidity nor uric acid concentration. Ibogaine also increased SOD1 activity in erythrocytes at both doses applied here. Treatment with 20 μM also elevated GR activity after in vitro incubation at 37°C. Electrophoretic profiles revealed that incubation with ibogaine mitigates H2O2 mediated suppression of SOD1 activity. CONCLUSION Some of the effects of ibogaine seem to be mediated through its influence on energy metabolism, redox active processes and the effects of discrete fluctuations of individual reactive oxygen species on different levels of enzyme activities. Overall, ibogaine acts as a pro-antioxidant by increasing activity of antioxidative enzymes and as an adaptagene in oxidative distress.
Oxidative Medicine and Cellular Longevity | 2018
Zorana Oreščanin-Dušić; Nikola Tatalović; Teodora Vidonja-Uzelac; Jelena Nestorov; Aleksandra Nikolić-Kokić; Ana Mijušković; Mihajlo Spasić; Roman Paškulin; Mara Bresjanac; Duško Blagojević
Ibogaine is an indole alkaloid originally extracted from the root bark of the African rainforest shrub Tabernanthe iboga. It has been explored as a treatment for substance abuse because it interrupts drug addiction and relieves withdrawal symptoms. However, it has been shown that ibogaine treatment leads to a sharp and transient fall in cellular ATP level followed by an increase of cellular respiration and ROS production. Since contractile tissues are sensitive to changes in the levels of ATP and ROS, here we investigated an ibogaine-mediated link between altered redox homeostasis and uterine contractile activity. We found that low concentrations of ibogaine stimulated contractile activity in spontaneously active uteri, but incremental increase of doses inhibited it. Inhibitory concentrations of ibogaine led to decreased SOD1 and elevated GSH-Px activity, but doses that completely inhibited contractions increased CAT activity. Western blot analyses showed that changes in enzyme activities were not due to elevated enzyme protein concentrations but posttranslational modifications. Changes in antioxidant enzyme activities point to a vast concentration-dependent increase in H2O2 level. Knowing that extracellular ATP stimulates isolated uterus contractility, while H2O2 has an inhibitory effect, this concentration-dependent stimulation/inhibition could be linked to ibogaine-related alterations in ATP level and redox homeostasis.
Journal of Toxicology and Environmental Health | 2018
Aleksandra Nikolić-Kokić; Nikola Tatalović; Jelena Nestorov; Milica Mijovic; Ana Mijušković; Marko Miler; Zorana Oreščanin-Dušić; Milan Nikolic; Verica Milošević; Duško Blagojević; Mihajlo Spasić; Čedo Miljević
ABSTRACT Atypical antipsychotics produce severe side effects including myocarditis that may be attributed to oxidative stress. The aim of this study was to investigate the influence of clozapine, ziprasidone, and sertindole on rat heart morphology and determine whether redox imbalane plays a role in development of histopathological changes. Adult 3-month-old male Wistar rats were treated with recommended daily dose for selected drugs. After 4 week treatment histopathological analysis of the heart was performed and expression and activity of antioxidant enzymes determined. All examined drugs induced histopathological changes that were characterized as toxic myocarditis. Degenerative changes in cardiomyocytes were accompanied by lymphocytic infiltration as well as pericardial histopathological alterations in all treated groups. The least prominent changes were observed in sertindole-treated animals, and most severe with clozapine. Clozapine increased superoxide dismutase 1 (SOD1) activity while ziprasidone reduced glutathione reductase (GR) activity. Sertindole exerted no marked effect on antioxidant enzyme function in the heart even though myocardial degeneration was noted. In conclusion, treatment with clozapine or ziprasidone induced pathophysiological alterations in rat heart, which appeared to be associated disturbances in antioxidant capacity. Abbreviation: AAP, Atypical antipsychotics; ROS, reactive oxygen species; SOD1, Copper-zinc superoxide dismutase; SOD2, Manganese superoxide dismutase; CAT, Catalase; GPx, Glutathione peroxidase; GR, Glutathione reductase; H&E, hematoxylin and eosin stain; TNF- α, tumor necrosis factor alpha.
British Journal of Pharmacology | 2015
Ana Mijušković; Aleksandra Nikolić Kokić; Zorana Oreščanin Dušić; Marija Slavić; Mihajlo Spasić; Duško Blagojević
Hydrogen sulphide reduces uterine contractility and is of potential interest as a treatment for uterine disorders. The aim of this study was to explore the mechanism of sodium sulphide (Na2S)‐induced relaxation of rat uterus, investigate the importance of redox effects and ion channel‐mediated mechanisms, and any interactions between these two mechanisms.