Jelena Nestorov
University of Belgrade
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jelena Nestorov.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013
Gordana Matić; Danijela Vojnović Milutinović; Jelena Nestorov; Ivana Elaković; Sanja Manitašević Jovanović; Tatjana Perišić; Jadranka Dunđerski; Svetozar Damjanovic; Goran Knežević; Željko Špirić; Eric Vermetten; Danka Savic
OBJECTIVE Posttraumatic stress disorder (PTSD) has been shown to be associated with altered glucocorticoid receptor (GR) activity. We studied the expression and functional properties of the receptor in peripheral blood mononuclear cells (PBMCs) from non-traumatized healthy individuals (healthy controls; n=85), and war trauma-exposed individuals with current PTSD (n=113), with life-time PTSD (n=61) and without PTSD (trauma controls; n=88). The aim of the study was to distinguish the receptor alterations related to PTSD from those related to trauma itself or to resilience to PTSD. METHODS Functional status of the receptor was assessed by radioligand binding and lysozyme synthesis inhibition assays. The level of GR gene expression was measured by quantitative PCR and immunoblotting. RESULTS Current PTSD patients had the lowest, while trauma controls had the highest number of glucocorticoid binding sites (Bmax) in PBMCs. Hormone-binding potential (Bmax/KD ratio) of the receptor was diminished in the current PTSD group in comparison to all other study groups. Correlation between Bmax and KD that normally exists in healthy individuals was decreased in the current PTSD group. Contrasting Bmax data, GR protein level was lower in trauma controls than in participants with current or life-time PTSD. CONCLUSIONS Current PTSD is characterized by reduced lymphocyte GR hormone-binding potential and by disturbed compensation between Bmax and hormone-binding affinity. Resilience to PTSD is associated with enlarged fraction of the receptor molecules capable of hormone binding, within the total receptor molecule population in PBMCs.
Journal of Biomedical Materials Research Part A | 2014
Marija V. Pergal; Jelena Nestorov; Gordana Tovilovic; Sanja Ostojić; Dejan Gođevac; Dana Vasiljević-Radović; Jasna Djonlagic
Properties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on α,ω-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by (1) H NMR, quantitative (13) C NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs. Samples with a higher PDMS content have more hydrophobic surface and better waterproof performances, but lower degree of crystallinity. Biocompatibility of TPUSs was examined after attachment of endothelial cells to the untreated copolymer surface or surface pretreated with multicomponent protein mixture, and by using competitive protein adsorption assay. TPUSs did not exhibit any cytotoxicity toward endothelial cells, as measured by lactate dehydrogenase and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assays. The untreated and proteins preadsorbed TPUS samples favored endothelial cells adhesion and growth, indicating good biocompatibility. All TPUSs adsorbed more albumin than fibrinogen in competitive protein adsorption experiment, which is feature regarded as beneficial for biocompatibility. The results indicate that TPUSs have good surface, thermo-mechanical, and biocompatible properties, which can be tailored for biomedical application requirements by adequate selection of the soft/hard segments ratio of the copolymers.
Journal of Biomaterials Science-polymer Edition | 2012
Marija V. Pergal; Vesna V. Antić; Gordana Tovilovic; Jelena Nestorov; Dana Vasiljević-Radović; Jasna Djonlagic
Abstract Novel polyurethane co-polymers (TPUs), based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone) (PCL-PDMS-PCL) as soft segment and 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) as hard segment, were synthesized and evaluated for biomedical applications. The content of hard segments (HS) in the polymer chains was varied from 9 to 63 wt%. The influence of the content and length of the HS on the thermal, surface, mechanical properties and biocompatibility was investigated. The structure, composition and HS length were examined using 1H- and quantitative 13C-NMR spectroscopy. DSC results implied that the synthesized TPUs were semicrystalline polymers in which both the hard MDI/BD and soft PCL-PDMS-PCL segments participated. It was found that an increase in the average HS length (from 1.2 to 14.4 MDI/BD units) was accompanied by an increase in the crystallinity of the hard segments, storage moduli, hydrophilicity and degree of microphase separation of the co-polymers. Depending on the HS content, a gradual variation in surface properties of co-polymers was revealed by FT-IR, AFM and static water contact angle measurements. The in vitro biocompatibility of co-polymers was evaluated using the endothelial EA.hy926 cell line and protein adsorption on the polyurethane films. All synthesized TPUs adsorbed more albumin than fibrinogen from multicomponent protein mixture, which may indicate biocompatibility. The polyurethane films with high HS content and/or high roughness coefficient exhibit good surface properties and biocompatible behavior, which was confirmed by non-toxic effects to cells and good cell adhesion. Therefore, the non-cytotoxic chemistry of the co-polymers makes them good candidates for further development as biomedical implants.
Experimental and Clinical Endocrinology & Diabetes | 2011
Danijela Vojnović Milutinović; Djuro Macut; Božić I; Jelena Nestorov; Svetozar Damjanovic; Gordana Matić
INTRODUCTION Molecular mechanisms underlying pathophysiology of polycystic ovary syndrome (PCOS), especially those related to cortisol signaling, are poorly understood. We hypothesized that modulation of glucocorticoid receptor (GR) expression and function, may underlie possible PCOS-related impairment of feedback inhibition of hypothalamic-pituitary-adrenocortical (HPA) axis activity and thus contribute to increased adrenal androgen production in women with PCOS. MATERIALS AND METHODS 24 normal-weight and 31 obese women with PCOS were compared to 25 normal-weight controls. Fasting blood samples were collected for measurements of serum concentrations of dehydroepiandrosterone sulfate, testosterone, sex hormone-binding globulin, insulin, basal cortisol and cortisol after oral administration of 0.5 mg dexamethasone. Concentrations of GR mRNA, GR protein, mineralocorticoid receptor (MR) protein and heat shock proteins (Hsps), as well as the number of GR per cell (B(max)) and its equilibrium dissociation constant (K(D)) were measured in isolated peripheral blood mononuclear cells. RESULTS An increase in HPA axis sensitivity to dexamethasone, an elevation of the GR protein concentration, and unaltered receptor functional status were found in both normal-weight and obese women with PCOS vs. healthy controls. Lymphocyte MR, Hsp90 and Hsp70 concentrations, and MR/GR ratio were similar in all groups. Correlation between B(max) and K(D) was weaker in the group of obese women with PCOS than in the other 2 groups. CONCLUSIONS The results did not confirm the initial hypothesis, but imply that PCOS is associated with increased GR protein concentration and HPA axis sensitivity to dexamethasone.
Psychiatry Research-neuroimaging | 2014
Gordana Matić; Danijela Vojnović Milutinović; Jelena Nestorov; Ivana Elaković; Sanja Manitašević Jovanović; Younis Mouftah Elzaedi; Tatjana Perišić; Jadranka Dunđerski; Svetozar Damjanovic; Goran Knežević; Željko Špirić; Eric Vermetten; Danka Savic
Alterations in the number and functional status of mineralocorticoid (MR) and glucocorticoid receptors (GR) may contribute to vulnerability to posttraumatic stress disorder (PTSD). Corticosteroid receptors are chaperoned by heat shock proteins Hsp90 and Hsp70. We examined relations between corticosteroid receptor and heat shock protein expression levels, and related them with war trauma exposure, PTSD and resilience to PTSD. Relative levels of MR, Hsp90 and Hsp70 were determined by immunoblotting in lymphocytes from war trauma-exposed men with current PTSD (current PTSD group, n=113), with life-time PTSD (life-time PTSD group, n=61) and without PTSD (trauma control group, n=88), and from non-traumatized healthy controls (healthy control group, n=85). Between-group differences in MR, Hsp90 and Hsp70 levels and in MR/GR ratio were not observed. The level of MR was correlated with both Hsp90 and Hsp70 levels in trauma control and healthy control groups. On the other hand, GR level was correlated only with Hsp90 level, and this correlation was evident in current PTSD and trauma control groups. In conclusion, PTSD and exposure to trauma are not related to changes in lymphocyte MR, Hsp90 or Hsp70 levels, but may be associated with disturbances in corticosteroid receptors interaction with heat shock proteins.
Journal of Medical Biochemistry | 2013
Jelena Nestorov; Gordana Matić; Ivana Elaković; Nikola Tanic
Summary Real-time RT PCR has been recognized as an accurate, reliable and sensitive method for quantifying gene transcription. However, several steps preceding PCR represent critical points and source of inaccuracies. These steps include cell processing, RNA extraction, RNA storage, assessment of RNA concentration and cDNA synthesis. To compensate for potential variability introduced by the procedure, normalization of target gene expression has been established. Accurate normalization has become an absolute prerequisite for the correct quantification of gene expression. Several strategies are in use for the normalization of data, including normalization to sample size, to total RNA or to an internal reference. Among these, the use of housekeeping genes as an internal (endogenous) control is the most common approach. Given the increased sensitivity, reproducibility and large dynamic range of this methodology, the requirements for a proper reference gene for normalization have become increasingly stringent. The aim of this paper is to discuss the concept of normalization in mRNA quantification, as well as to discuss several statistical algorithms developed to help the validation of potential reference genes. By showing that the use of inappropriate endogenous control might lead to incorrect results and misinterpretation of experimental data, we are joining the creators of Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) in an attempt to convince scientists that proper validation of potential reference genes is an absolute prerequisite for correct normalization and, therefore, for providing accurate and reliable data by quantitative real-time RT PCR gene expression analyses. Kratak sadržaj RT-PCR je prepoznat kao precizna, pouzdana i osetljiva metoda za kvantifikaciji! transkripcije gena. Medutim, ovoj metodi prethodi nekoliko koraka koji predstavljaju kritične tačke i izvor potencijalnih grešaka. Ovi korači uključuju obradu čelijskog materijala, ekstrakciju i čuvanje RNK, odredivanje koncentracije RNK i sintezu cDNK. Da bi se kompenzovala potencijalna varijabilnost na- stala tokom procedure, uvedena je normalizacija ekspresije ciljnih gena. Precizna normalizacija je postala apsolutni pre- duslov za tačnu kvantifikaciju ekspresije gena. Postoji neko- liko strategija za normalizaciju eksperimentalnih podataka, uključujuči normalizaciju u odnosu na veličinu uzorka, ukup- nu RNK ili internú kontrolu (referencu). Kao interna (endo- gena) kontrola najčešče se koriste geni sa stabilnom ekspre- sijom. Imajuči u vidu veliku osetljivost, reproducibilnost i veliki dinamički opseg PCR metode, zahtevi za odgovara- jučim referentnim genima koji če se koristiti za normalizaciju podataka postali su veoma restriktivni. Cilj ovog rada je da razjasni koncept normalizacije i prokomentariše nekoliko sta- tističkih algoritama koji su razvijeni kako bi pomogli u valida- ciji potencijalnih referentnih gena. Pokazujuči da koriščenje neodgovarajučih referentnih gena (endogenih kontrola) može da dovede do netačnih rezultata i pogrešne inter- pretacije eksperimentalnih podataka, mi se priključujemo tvorcima uputstva MIQE (eng. Minimum Information for Publication of Quantitative Real-Time PCR Experiments) u pokúšajú da ubedimo naučnu javnost da je ispravna validacija potencijalnih referentnih gena apsolutni preduslov za tačnu normalizaciju i, shodno tome, preduslov za dobijanje tačnih i pouzdanih podataka u analizi ekspresije gena metodom kvantitativnog PCR-a u reálnom vremenu.
European Journal of Nutrition | 2014
Sanja Kovačević; Jelena Nestorov; Gordana Matić; Ivana Elaković
AbstractPurpose Excessive fructose intake coincides with the growing rate of obesity and metabolic syndrome, with women being more prone to these disorders than men. Findings that detrimental effects of fructose might be mediated by glucocorticoid regeneration in adipose tissue only indirectly implicated glucocorticoid receptor (GR) in the phenomenon. The aim of the present study was to elucidate whether fructose overconsumption induces derangements in GR expression and function that might be associated with fructose-induced adiposity in females.MethodsWe examined effects of fructose-enriched diet on GR expression and function in visceral adipose tissue of female rats. Additionally, we analyzed the expression of genes involved in glucocorticoid prereceptor metabolism [11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and hexose-6-phosphate dehydrogenase], lipolysis (hormone-sensitive lipase) and lipogenesis (sterol regulatory element binding protein 1 and peroxisomal proliferator-activated receptor γ).ResultsFructose-fed rats had elevated energy intake that resulted in visceral adiposity, as indicated by increased visceral adipose tissue mass and its share in the whole-body weight. GR hormone binding capacity and affinity, as well as the expression of GR gene at both mRNA and protein levels were reduced in visceral adipose tissue of the rats on fructose diet. The glucocorticoid prereceptor metabolism was stimulated, as evidenced by elevated tissue corticosterone, while the key regulators of lipolysis and lipogenesis remained unaffected by fructose diet.ConclusionsThe results suggest that the 11βHSD1-mediated elevation of intracellular corticosterone may induce GR downregulation, which may be associated with failure of GR to stimulate lipolysis in fructose-fed female rats.
European Journal of Nutrition | 2017
Sanja Kovačević; Jelena Nestorov; Gordana Matić; Ivana Elaković
PurposeThe consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity.MethodsWe examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser307.ResultsFructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet.ConclusionsThe results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.
Journal of Biomedical Materials Research Part A | 2015
Ivan Stefanovic; Jasna Djonlagic; Gordana Tovilovic; Jelena Nestorov; Vesna V. Antić; Sanja Ostojić; Marija V. Pergal
Polyurethane copolymers based on α,ω-dihydroxypropyl poly(dimethylsiloxane) (PDMS) with a range of soft segment contents were prepared by two-stage polymerization, and their microstructures, thermal, thermomechanical, and surface properties, as well as in vitro hemo- and cytocompatibility were evaluated. All utilized characterization methods confirmed the existence of moderately microphase separated structures with the appearance of some microphase mixing between segments as the PDMS (i.e., soft segment) content increased. Copolymers showed higher crystallinity, storage moduli, surface roughness, and surface free energy, but less hydrophobicity with decreasing PDMS content. Biocompatibility of copolymers was evaluated using an endothelial EA.hy926 cell line by direct contact, an extraction method and after pretreatment of copolymers with multicomponent protein mixture, as well as by a competitive protein adsorption assay. Copolymers showed no toxic effect to endothelial cells and all copolymers, except that with the lowest PDMS content, exhibited resistance to endothelial cell adhesion, suggesting their unsuitability for long-term biomedical devices which particularly require re-endothelialization. All copolymers exhibited excellent resistance to fibrinogen adsorption and adsorbed more albumin than fibrinogen in the competitive adsorption assay, suggesting their good hemocompatibility. The noncytotoxic chemistry of these synthesized materials, combined with their nonadherent properties which are inhospitable to cell attachment and growth, underlie the need for further investigations to clarify their potential for use in short-term biomedical devices.
Epilepsia | 2015
Aleksandar J. Ristić; Danijela Savic; Dragoslav Sokić; Jelena Bogdanović Pristov; Jelena Nestorov; Vladimir Baščarević; Savo Raičević; Slobodan Savic; Ivan Spasojevic
To examine antioxidative system in hippocampi of patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (mTLE‐HS).