Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana O'Loghlen is active.

Publication


Featured researches published by Ana O'Loghlen.


Cell | 2008

Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence

Juan Carlos Acosta; Ana O'Loghlen; Ana Banito; Maria V. Guijarro; Arnaud Augert; Selina Raguz; Marzia Fumagalli; Marco Da Costa; Celia Brown; Nikolay Popov; Yoshihiro Takatsu; Jonathan Melamed; Fabrizio d'Adda di Fagagna; David Bernard; Eva Hernando; Jesús Gil

Cells enter senescence, a state of stable proliferative arrest, in response to a variety of cellular stresses, including telomere erosion, DNA damage, and oncogenic signaling, which acts as a barrier against malignant transformation in vivo. To identify genes controlling senescence, we conducted an unbiased screen for small hairpin RNAs that extend the life span of primary human fibroblasts. Here, we report that knocking down the chemokine receptor CXCR2 (IL8RB) alleviates both replicative and oncogene-induced senescence (OIS) and diminishes the DNA-damage response. Conversely, ectopic expression of CXCR2 results in premature senescence via a p53-dependent mechanism. Cells undergoing OIS secrete multiple CXCR2-binding chemokines in a program that is regulated by the NF-kappaB and C/EBPbeta transcription factors and coordinately induce CXCR2 expression. CXCR2 upregulation is also observed in preneoplastic lesions in vivo. These results suggest that senescent cells activate a self-amplifying secretory network in which CXCR2-binding chemokines reinforce growth arrest.


Cell Stem Cell | 2012

MicroRNA Regulation of Cbx7 Mediates a Switch of Polycomb Orthologs during ESC Differentiation

Ana O'Loghlen; Ana M. Muñoz-Cabello; Alexandre Gaspar-Maia; Hsan-Au Wu; Ana Banito; Natalia Kunowska; Tomas Racek; Helen Pemberton; Patrizia Beolchi; Fabrice Lavial; Osamu Masui; Michiel Vermeulen; Thomas Carroll; Johannes Graumann; Edith Heard; Niall Dillon; Véronique Azuara; Ambrosius P. Snijders; Gordon Peters; Emily Bernstein; Jesús Gil

Summary The Polycomb Group (PcG) of chromatin modifiers regulates pluripotency and differentiation. Mammalian genomes encode multiple homologs of the Polycomb repressive complex 1 (PRC1) components, including five orthologs of the Drosophila Polycomb protein (Cbx2, Cbx4, Cbx6, Cbx7, and Cbx8). We have identified Cbx7 as the primary Polycomb ortholog of PRC1 complexes in embryonic stem cells (ESCs). The expression of Cbx7 is downregulated during ESC differentiation, preceding the upregulation of Cbx2, Cbx4, and Cbx8, which are directly repressed by Cbx7. Ectopic expression of Cbx7 inhibits differentiation and X chromosome inactivation and enhances ESC self-renewal. Conversely, Cbx7 knockdown induces differentiation and derepresses lineage-specific markers. In a functional screen, we identified the miR-125 and miR-181 families as regulators of Cbx7 that are induced during ESC differentiation. Ectopic expression of these miRNAs accelerates ESC differentiation via regulation of Cbx7. These observations establish a critical role for Cbx7 and its regulatory miRNAs in determining pluripotency.


Cell Cycle | 2008

Control of senescence by CXCR2 and its ligands.

Juan Carlos Acosta; Ana O'Loghlen; Ana Banito; Selina Raguz; Jesús Gil

Senescence is an irreversible growth arrest with important physiological implications as it contributes to tumour suppression and may have a role in aging. During senescence, cells suffer profound phenotypic changes affecting amongst others cell morphology and chromatin structure. Senescent cells also undergo significant transcriptional changes, such as the increased production of a plethora of different secreted factors, which are the basis of the so-called senescence-associated secretory phenotype. While some of these factors have been previously shown to possess different pro-tumorigenic activities, we recently demonstrated that the secretion of CXCR2-binding chemokines (such as IL-8 or GROα) by senescent cells contribute to reinforce senescence via activation of the p53 pathway. Importantly, our data adds to that presented by several groups suggesting that also other factors secreted during senescence (such as PAI-1, IGFBP-7 or IL-6) contribute to the senescent response. Here, we discuss our findings in the context of the emerging role for secreted factors in regulating senescence through paracrine and/or autocrine mechanisms


The EMBO Journal | 2013

Interplay between Homeobox proteins and Polycomb repressive complexes in p16INK4a regulation

Nadine Martin; Nikolay Popov; Francesca Aguilo; Ana O'Loghlen; Selina Raguz; Ambrosius P. Snijders; Gopuraja Dharmalingam; SiDe Li; Efstathia Thymiakou; Thomas Carroll; Bernd B. Zeisig; Chi Wai Eric So; Gordon Peters; Vasso Episkopou; Martin J. Walsh; Jesús Gil

The INK4/ARF locus regulates senescence and is frequently altered in cancer. In normal cells, the INK4/ARF locus is found silenced by Polycomb repressive complexes (PRCs). Which are the mechanisms responsible for the recruitment of PRCs to INK4/ARF and their other target genes remains unclear. In a genetic screen for transcription factors regulating senescence, we identified the homeodomain‐containing protein HLX1 (H2.0‐like homeobox 1). Expression of HLX1 extends cellular lifespan and blunts oncogene‐induced senescence. Using quantitative proteomics, we identified p16INK4a as the key target mediating the effects of HLX1 in senescence. HLX1 represses p16INK4a transcription by recruiting PRCs and HDAC1. This mechanism has broader implications, as HLX1 also regulates a subset of PRC targets besides p16INK4a. Finally, sampling members of the Homeobox family, we identified multiple genes with ability to repress p16INK4a. Among them, we found HOXA9 (Homeobox A9), a putative oncogene in leukaemia, which also recruits PRCs and HDAC1 to regulate p16INK4a. Our results reveal an unexpected and conserved interplay between homeodomain‐containing proteins and PRCs with implications in senescence, development and cancer.


Oncogene | 2015

The nuclear receptor NR2E1/TLX controls senescence.

Ana O'Loghlen; Nadine Martin; Benjamin Krusche; Helen Pemberton; M M Alonso; Hollie Chandler; S Brookes; Simona Parrinello; Gordon Peters; Jesús Gil

The nuclear receptor NR2E1 (also known as TLX or tailless) controls the self-renewal of neural stem cells (NSCs) and has been implied as an oncogene which initiates brain tumors including glioblastomas. Despite NR2E1 regulating targets like p21CIP1 or PTEN we still lack a full explanation for its role in NSC self-renewal and tumorigenesis. We know that polycomb repressive complexes also control stem cell self-renewal and tumorigenesis, but so far, no formal connection has been established between NR2E1 and PRCs. In a screen for transcription factors regulating the expression of the polycomb protein CBX7, we identified NR2E1 as one of its more prominent regulators. NR2E1 binds at the CBX7 promoter, inducing its expression. Notably CBX7 represses NR2E1 as part of a regulatory loop. Ectopic NR2E1 expression inhibits cellular senescence, extending cellular lifespan in fibroblasts via CBX7-mediated regulation of p16INK4a and direct repression of p21CIP1. In addition NR2E1 expression also counteracts oncogene-induced senescence. The importance of NR2E1 to restrain senescence is highlighted through the process of knocking down its expression, which causes premature senescence in human fibroblasts and epithelial cells. We also confirmed that NR2E1 regulates CBX7 and restrains senescence in NSCs. Finally, we observed that the expression of NR2E1 directly correlates with that of CBX7 in human glioblastoma multiforme. Overall we identified control of senescence and regulation of polycomb action as two possible mechanisms that can join those so far invoked to explain the role of NR2E1 in control of NSC self-renewal and cancer.


FEBS Letters | 2004

Suppression of human Mnk1 by small interfering RNA increases the eukaryotic initiation factor 4F activity in HEK293T cells.

Ana O'Loghlen; Vı́ctor M. González; Matilde Salinas; M. Elena Martín

Short‐interfering RNAs (siRNAs) have proved to be a useful tool in studying gene function in plants, invertebrates and mammalian systems. Herein, we report the use of siRNAs for targeting the human MAP kinase‐interacting kinase Mnk1 gene. This study demonstrates the efficacy of the designed siRNA in silencing Mnk1 in the human cell line HEK293T and shows that Mnk1 suppression decreases eukaryotic initiation factor 4E phosphorylation without causing any change in global protein synthesis rate and cell proliferation. Interestingly, suppression of Mnk1 results in a significant increase in eukaryotic initiation factor 4F complex formation after 72 h of transfection.


Journal of Neuroscience Research | 2004

Does phosphorylation of eukaryotic elongation factor eEF2 regulate protein synthesis in ischemic preconditioning

L. García; Ana O'Loghlen; M.E. Martín; Jozef Burda; Matilde Salinas

Ischemia/reperfusion‐associated translation inhibition in the hippocampus is attenuated significantly at reinitiation and elongation steps by ischemic preconditioning (Burda et al. [2003] Neurochem. Res. 28:1237–1243). To address potential regulation of the elongation step by changes in eukaryotic elongation factor 2 (eEF2) phosphorylation with and without acquired ischemic tolerance (IT), Wistar rats were preconditioned by 5‐min sublethal ischemia and 2 days later, 30‐min lethal ischemia was induced. Given the important role that oxidative stress plays in the ischemic process, eEF2 phosphorylation was also studied in a model of oxidative stress in vitro. Three blocks of our results support a lack of correlation between eEF2 phosphorylation status and protein synthesis rate. First, eEF2 was dephosphorylated significantly (activated) after transient cerebral ischemia in rats with and without IT or H2O2‐treated cells; however, protein synthesis was significantly inhibited under these three conditions. Second, after 30‐min reperfusion, the protein synthesis rate was maintained below control levels in cortex and hippocampus of rats without IT. Eukaryotic EF2 phosphorylated levels were notably low only in the cortex, whereas levels in the hippocampus were close to that of sham controls. In rats with IT, protein synthesis was virtually restored in both brain regions, but phosphorylated eEF2 levels were even higher than in rats without IT. Third, after 4‐hr reperfusion, the protein synthesis rate in cortex and hippocampus was observed to be below sham control values in rats with and without IT. Conversely, phosphorylated eEF2 levels were below sham control in rats with IT and reached sham control values in rats without IT.


Aging Cell | 2015

CBX7 and miR-9 are part of an autoregulatory loop controlling p16(INK) (4a).

Ana O'Loghlen; Sharon Brookes; Nadine Martin; Valentina Rapisarda; Gordon Peters; Jesús Gil

Polycomb repressive complexes (PRC1 and PRC2) are epigenetic regulators that act in coordination to influence multiple cellular processes including pluripotency, differentiation, cancer and senescence. The role of PRCs in senescence can be mostly explained by their ability to repress the INK4/ARF locus. CBX7 is one of five mammalian orthologues of Drosophila Polycomb that forms part of PRC1. Despite the relevance of CBX7 for regulating senescence and pluripotency, we have a limited understanding of how the expression of CBX7 is regulated. Here we report that the miR‐9 family of microRNAs (miRNAS) downregulates the expression of CBX7. In turn, CBX7 represses miR‐9‐1 and miR‐9‐2 as part of a regulatory negative feedback loop. The miR‐9/CBX7 feedback loop is a regulatory module contributing to induction of the cyclin‐dependent kinase inhibitor (CDKI) p16INK4a during senescence. The ability of the miR‐9 family to regulate senescence could have implications for understanding the role of miR‐9 in cancer and aging.


Frontiers in Molecular Biosciences | 2017

Technical Advances to Study Extracellular Vesicles

Paula Carpintero-Fernández; Juan Fafián-Labora; Ana O'Loghlen

Extracellular vesicles are a heterogeneous and dynamic group of lipid bilayer membrane nanoparticles that can be classified into three different groups depending on their cellular origin: exosomes, microvesicles, and apoptotic bodies. They are produced by different cell types and can be isolated from almost all body fluids. EVs contain a variety of proteins, lipids, nucleic acids, and metabolites which regulate a number of biological and pathological scenarios both locally and systemically. Different techniques have been described in order to determine EV isolation, release, uptake, and cargo. Although standard techniques such as immunoblotting, fluorescent microscopy, and electron microscopy are still being used to characterize and visualize EVs, in the last years, more fine-tuned techniques are emerging. For example, EV uptake can be specifically determined at a single cell level using the Cre reporter methodology and bioluminescence based-methods reports have been employed to determine both EV release and uptake. In addition, techniques for cargo identification have also enormously evolved during these years. Classical mass spectrometry and next generation sequencing have been used in the past, but nowadays, advances in these tools have facilitated a more in depth characterization of the EV content. In this review, we aim to assess the standard and latest technical advances for studying EV biology in different biological systems.


Philosophical Transactions of the Royal Society B | 2018

Role for extracellular vesicles in the tumour microenvironment

Ana O'Loghlen

Extracellular vesicles (EVs) are small-membrane vesicles secreted by most cells types with the role to provide intercellular communication both locally and systemically. The transfer of their content between cells, which includes nucleic acids, proteins and lipids, confers the means for these interactions and induces significant cellular behaviour changes in the receiving cell. EVs are implicated in the regulation of numerous physiological and pathological processes, including development and neurological and cardiovascular diseases. Importantly, it has been shown that EV signalling is essential in almost all the steps necessary for the progress of carcinomas, from primary tumours to metastasis. In this review, we will focus on the latest findings for EV biology in relation to cancer progression and the tumour microenvironment. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.

Collaboration


Dive into the Ana O'Loghlen's collaboration.

Top Co-Authors

Avatar

Jesús Gil

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Ana Banito

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Selina Raguz

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Fafián-Labora

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Michela Borghesan

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge