Ana P. Carapeto
Instituto Superior Técnico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana P. Carapeto.
Journal of Nanomaterials | 2016
A. Hamdi; D.P. Ferreira; A.M. Ferraria; D.S. Conceição; L.F. Vieira Ferreira; Ana P. Carapeto; Sami Boufi; S. Bouattour; A.M. Botelho do Rego
Nanocomposites TiO2-CdS with different relative contents of CdS molar ratios Cd/Ti = 0.02, 0.03, 0.05, 0.1, 0.2, and 0.5 were studied. The structural, photophysical, and chemical properties were investigated using XRD, Raman spectroscopy, XPS, GSDR, and LIL. XRD and Raman results confirmed the presence of TiO2 and CdS with intensities dependent on the ratio Cd/Ti. The presence of CdSO4 was detected by XPS at the surface of all TiO2-CdS composites. The relative amount of sulphate was dependent on the CdS loading. Luminescence time-resolved spectra clearly proved the existence of an excitation transfer process from CdS to TiO2 through the luminescence emission from TiO2 after excitation of CdS at λexc=410 nm, where no direct excitation of TiO2 occurs. Photodegradation of a series of aromatic carboxylic acids—benzoic, salicylic, 4-bromobenzoic, 3-phenylpropionic, and veratric acids—showed a great enhancement in the photocatalytic efficiency of the TiO2-CdS composites, which is due, mainly, to the effect of the charge carriers’ increased lifetime. In addition, it was shown that the oxidation of CdS to CdSO4 did not result in the deactivation of the photocatalytic properties and even contributed to enhance the degradation efficiency.
Carbohydrate Polymers | 2017
Ana P. Carapeto; A.M. Ferraria; Ana Maria Botelho do Rego
Metallic silver nanoparticles were synthesized in aqueous solution using chitosan, as both reducing and stabilizing agent, and AgNO3 as silver precursor aiming the production of solid ultra-thin films. A systematic characterization of the resulting system as a function of the initial concentrations was performed. The combination of UV-vis absorption - and its quantitative analysis - with X-ray photoelectron spectra, light scattering measurements and atomic force microscopy allowed obtaining a rational picture of silver reduction mechanism through the identification of the nature of the formed reduced/oxidized species. Nanoparticle mean sizes and sizes distributions were rather independent from the precursors initial absolute and relative concentrations ([AgNO3]/[chitosan]). This work clarifies some points of the mechanism involved showing experimental evidence of the early stages of the very fast silver reduction in chitosan aqueous solutions through the spectral signature of the smallest silver aggregate (Ag2+) even at room temperature. The characterized system is believed to be useful for research fields where silver nanoparticles completely exempt of harmful traces of inorganic ions, coming from additional reducing agents, are needed, especially to be used in biocompatible in films.
Journal of Colloid and Interface Science | 2017
Marwa Abid; S. Bouattour; A.M. Ferraria; D.S. Conceição; Ana P. Carapeto; Luis Filipe Vieira Ferreira; Ana Maria Botelho do Rego; Mohamed M. Chehimi; Manuel Rei Vilar; Sami Boufi
In the present work, a simple, reliable and cost-effective approach to functionalize cotton fabrics with Ag-TiO2 nanoparticles strongly bound to the fibres and with visible-light-responsive photo-activity is presented. The hybrid cotton-Ag-TiO2 fabrics were characterized by Raman, AFM, FE-SEM, TGA, XPS GSDR, and LIL to confirm the generation of metallic Ag nanoparticles and crystalline TiO2 and investigate how the concentration of Ag and TiO2 precursors affected the morphology and the luminescence properties of the nanostructured layer grafted on the cotton fibres. The photocatalytic activity of the cotton-Ag-TiO2 hybrid systems was evaluated by the discoloration of Remazol Brilliant Blue R in water under a xenon lamp irradiation (sunlight simulator) equipped with selective filters. The extended photocatalytic activity to the visible is here explained by a synergistic effect of both the excitation of the Ag NPs plasmon resonance by visible light and a delayed electron-hole recombination rate caused by Ag NPs, as it can be observed by UV absorption.
Carbohydrate Polymers | 2017
Marwa Abid; S. Bouattour; A.M. Ferraria; D.S. Conceição; Ana P. Carapeto; L.F. Vieira Ferreira; A.M. Botelho do Rego; M. Rei Vilar; Sami Boufi
A simple approach to functionalize cotton fabrics with Au and TiO2 nanostructured layer is presented. Hybrid fabrics (Cot-Au-TiO2) are prepared through reduction of AuCl4- on cotton, followed by a non-aqueous sol-gel procedure using tetrabutyltitanate and a hydrothermal treatment at 110°C. The generation of crystalline TiO2 is confirmed by Raman spectroscopy. The fibres morphology and their roughness are characterized by AFM and FE-SEM. XPS shows how the concentration of the NPs precursors (Au and TiO2) affects the layer composition. GSDR (Ground State Diffuse Reflectance Absorption Spectroscopy) and LIL (Laser induced luminescence) reveal a strong quenching effect induced by Au NPs. Photocatalytic activity measured through the Remazol Blue (RB) degradation reveals an enhancement under visible light, which increases with Au loading. This strong enhancement is explained through the surface plasmon resonance brought by Au NPs.
Microscopy and Microanalysis | 2015
Ana P. Carapeto; A.M. Ferraria; P. Brogueira; Sami Boufi; Ana Maria Botelho do Rego
In this work, we report the preparation of ultrathin submicro- and nanoporous cellulose films onto Si (100). The effect of different experimental conditions of preparation on the film surface morphology was studied, namely the role of the film casting method (spin- versus dip-coating), solvent (toluene or tetrahydrofuran), substrate pretreatment (hydrophilicity degree), and regeneration procedure with HCl vapors (two consecutive dips followed by regeneration or regeneration after each dip). The surface morphological structures presented in this work were never obtained before without the use of templates. A rather regular two-dimensional pore network was obtained onto the less hydrophilic Si substrate (contact angle≅68°), after two consecutive dips (with an intercalary rotation of 180º) in trimethylsilyl cellulose diluted in toluene and regeneration at the end. All the surfaces were characterized by atomic force microscopy.
Journal of Electrical Engineering-elektrotechnicky Casopis | 2017
Asma Sedik; A.M. Ferraria; Ana P. Carapeto; Bouzid Bellal; Mohamed Trari; Ratiba Outemzabet
Abstract TiO2 has an easily tunable bandgap and a great absorption dye ability being widely used in many fields and in a number of fascinating applications. In this study, a wet chemical route, particularly a sol gel method using spin-coating is adopted to deposit TiO2 thin films onto soda lime glass and silicon substrates. TiO2 films were prepared by using an alcoholic solution of analytical reagent grade TiCl4 as titanium precursor at various experimental conditions. The accent was put on the conditions of preparation (spin time, spin speed, precursor concentration, number of coating layers etc), doping and on the post-deposit treatment namely the drying and the crystallization. The results showed a strong dependence on the drying temperature and on the temperature and duration of the crystallization. We found that the solution preparation and its color are important for getting a reproducible final product. The Raman spectra recorded at room temperature, showed the characteristic peaks of anatase which appear at 143 and around 396 cm−1. These peaks confirm the presence of TiO2. The X-ray diffraction (XRD) was used to identify the crystalline characteristic of TiO2 while the chemical states and relative amounts of the main elements existing in the samples were investigated by X-ray Photoelectron Spectroscopy (XPS). The morphology of the samples was visualized by AFM. We show by this work the feasibility to obtain different nanostructured TiO2 by changing the concentration of the solution. Photocatalytic activity of TiO2 films was evaluated. Rhodamine B is a recalcitrant dye and TiO2 was successfully tested for its oxidation. An abatement of 60% was obtained under sunlight for an initial concentration of 10 mg/l.
Vacuum | 2012
A.M. Ferraria; Ana P. Carapeto; Ana Maria Botelho do Rego
Separation and Purification Technology | 2012
Luís Raiado-Pereira; Ana P. Carapeto; Ana Maria Botelho do Rego; Marília Mateus
Polymer Testing | 2017
Ana P. Carapeto; A.M. Ferraria; A.M. Botelho do Rego
Polymer Testing | 2017
Ana P. Carapeto; A.M. Ferraria; A.M. Botelho do Rego