Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Paula B. Moreira is active.

Publication


Featured researches published by Ana Paula B. Moreira.


BMC Microbiology | 2010

Diversity of lactic acid bacteria of the bioethanol process

Brígida T. Luckwu de Lucena; Billy Manoel dos Santos; João Ls Moreira; Ana Paula B. Moreira; Álvaro Cantini Nunes; Vasco Azevedo; Anderson Miyoshi; Fabiano L. Thompson; Marcos Antonio de Morais

BackgroundBacteria may compete with yeast for nutrients during bioethanol production process, potentially causing economic losses. This is the first study aiming at the quantification and identification of Lactic Acid Bacteria (LAB) present in the bioethanol industrial processes in different distilleries of Brazil.ResultsA total of 489 LAB isolates were obtained from four distilleries in 2007 and 2008. The abundance of LAB in the fermentation tanks varied between 6.0 × 105 and 8.9 × 108 CFUs/mL. Crude sugar cane juice contained 7.4 × 107 to 6.0 × 108 LAB CFUs. Most of the LAB isolates belonged to the genus Lactobacillus according to rRNA operon enzyme restriction profiles. A variety of Lactobacillus species occurred throughout the bioethanol process, but the most frequently found species towards the end of the harvest season were L. fermentum and L. vini. The different rep-PCR patterns indicate the co-occurrence of distinct populations of the species L. fermentum and L. vini, suggesting a great intraspecific diversity. Representative isolates of both species had the ability to grow in medium containing up to 10% ethanol, suggesting selection of ethanol tolerant bacteria throughout the process.ConclusionsThis study served as a first survey of the LAB diversity in the bioethanol process in Brazil. The abundance and diversity of LAB suggest that they have a significant impact in the bioethanol process.


PLOS ONE | 2012

Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

Amaro E. Trindade-Silva; Cintia P. J. Rua; Genivaldo G. Z. Silva; Bas E. Dutilh; Ana Paula B. Moreira; Robert Edwards; Eduardo Hajdu; Gisele Lôbo-Hajdu; Ana Tereza Ribeiro de Vasconcelos; Roberto G. S. Berlinck; Fabiano L. Thompson

The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.


Science Advances | 2016

An extensive reef system at the Amazon River mouth

Rodrigo L. Moura; Gilberto M. Amado-Filho; Fernando C. Moraes; Poliana S. Brasileiro; Paulo S. Salomon; Michel Michaelovitch de Mahiques; Alex Cardoso Bastos; Marcelo G. Almeida; Jomar M Silva; Beatriz Ferreira Araújo; Frederico P. de Brito; Thiago Pessanha Rangel; Braulio Cherene Vaz de Oliveira; Ricardo G. Bahia; Rodolfo Paranhos; Rodolfo Jasão Soares Dias; Eduardo Siegle; Alberto Garcia de Figueiredo; Renato Crespo Pereira; Camille V. Leal; Eduardo Hajdu; Nils Edvin Asp; Gustavo B. Gregoracci; Sigrid Neumann-Leitão; Patricia L. Yager; Ronaldo B. Francini-Filho; Adriana M. Fróes; Mariana E. Campeão; Bruno Sergio de O. Silva; Ana Paula B. Moreira

A novel Amazonian reef biome was discovered, encompassing large rhodolith and sponge beds under low light, low oxygen, and high POC. Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 106–km2 plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume’s eastward retroflection, conditions the existence of this extensive (~9500 km2) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth–ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.


International Journal of Systematic and Evolutionary Microbiology | 2011

Usefulness of a real-time PCR platform for G+C content and DNA-DNA hybridization estimations in vibrios

Ana Paula B. Moreira; Nei Pereira; Fabiano L. Thompson

The aim of this study was to evaluate the utility of a real-time PCR platform to estimate the DNA G+C content (mol%) and DNA-DNA hybridization (DDH) values in the genus Vibrio. In total, nine vibrio strains were used to determine the relationship between genomic DNA G+C content and T(m) (°C). The T(m) and HPLC datasets fit a linear regression curve with a significant correlation coefficient, corroborating that this methodology has a high correlation with the standard methodology based on HPLC (R(2) = 0.94). Analysis of 31 pairs of vibrios provided a wide range of ΔT(m) values, varying between 0.72 and 12.5 °C. Pairs corresponding to strains of the same species or strains from sister species showed the lowest ΔT(m) values. For instance, the ΔT(m) of the sister species Vibrio harveyi LMG 4044(T) and Vibrio campbellii LMG 11216(T) was 5.2 °C, whereas the ΔT(m) of Vibrio coralliilyticus LMG 20984(T) and Vibrio neptunius LMG 20536(T) was 8.75 °C. The mean ΔT(m) values corresponding to pairs of strains with DDH values lower than 60 % or higher than 80 % were, respectively, 8.29 and 2.21 °C (significant difference, P<0.01). The high correlation between DDH values obtained in previous studies and the ΔT(m) values (R(2) = 0.7344) indicates that the fluorimetric methodology is a reliable alternative for the estimation of both DNA G+C content and ΔT(m) in vibrios. We suggest that strains of the same Vibrio species will have less than 4 °C ΔT(m). The use of a real-time PCR platform represents a valuable alternative for the development of the taxonomy of vibrios.


Frontiers in Microbiology | 2015

Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro.

Giovana O. Fistarol; Felipe H. Coutinho; Ana Paula B. Moreira; Tainá Venas; Alba Cánovas; Sérgio E. M. de Paula; Ricardo Coutinho; Rodrigo L. Moura; Jean Louis Valentin; Denise Rivera Tenenbaum; Rodolfo Paranhos; Rogerio Valle; Ana Carolina Paulo Vicente; Gilberto M. Amado Filho; Renato Crespo Pereira; Ricardo Henrique Kruger; Carlos Eduardo Rezende; Cristiane C. Thompson; Paulo S. Salomon; Fabiano L. Thompson

Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro.


Memorias Do Instituto Oswaldo Cruz | 2009

Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

Palloma Rodrigues Marinho; Ana Paula B. Moreira; Flávia Lúcia Piffano Costa Pellegrino; Guilherme Muricy; Maria do Carmo de Freire Bastos; Kátia Regina Netto dos Santos; Marinella Silva Laport

Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3) isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.


web science | 2011

Vibrio variabilis sp. nov. and Vibrio maritimus sp. nov., isolated from Palythoa caribaeorum

Luciane A. Chimetto; Ilse Cleenwerck; Ana Paula B. Moreira; Marcelo Brocchi; Anne Willems; Paul De Vos; Fabiano L. Thompson

Two novel vibrio isolates (R-40492(T) and R-40493(T)) originating from the zoanthid Palythoa caribaeorum in Brazil in 2005 were taxonomically characterized by means of a polyphasic approach comprising multilocus sequence analysis (MLSA), DNA-DNA hybridization (DDH), ΔT(m) analysis and phenotypic characterization. Phylogenetic analysis based on 16S rRNA gene sequences showed that R-40492(T) and R-40493(T) fell within the genus Vibrio and were most closely related to each other with 99% similarity; similarities of these two novel isolates towards Vibrio neptunius LMG 20536(T), Vibrio coralliilyticus LMG 20984(T), Vibrio nigripulchritudo LMG 3896(T), Vibrio sinaloensis LMG 25238(T) and Vibrio brasiliensis LMG 20546(T) varied between 97.1 and 98.5%. DDH experiments showed that the two isolates had less than 15% relatedness to the phylogenetically most closely related Vibrio species. R-40492(T) and R-40493(T) had 55-57% relatedness to each other. The ΔT(m) between R-40492(T) and R-40493(T) was 6.12 °C. In addition, MLSA of concatenated sequences (16S rRNA, ftsZ, gyrB, recA, rpoA, topA, pyrH and mreB; 6035 bp in length) showed that the two novel isolates formed a separate branch with less than 92% concatenated gene sequence similarity towards known species of vibrios. Two novel species are proposed to accommodate these novel isolates, namely Vibrio variabilis sp. nov. (type strain, R-40492(T)=LMG 25438(T)=CAIM 1454(T)) and Vibrio maritimus sp. nov. (type strain, R-40493(T)=LMG 25439(T)=CAIM 1455(T)).


PeerJ | 2014

Photobacterium sanctipauli sp. nov. isolated from bleached Madracis decactis (Scleractinia) in the St Peter & St Paul Archipelago, Mid-Atlantic Ridge, Brazil

Ana Paula B. Moreira; Gwen Duytschaever; Luciane A. Chimetto Tonon; Adriana M. Fróes; Louisi de Oliveira; Gilberto M. Amado-Filho; Ronaldo B. Francini-Filho; Paul De Vos; Jean Swings; Cristiane C. Thompson; Fabiano L. Thompson

Five novel strains of Photobacterium (A-394T, A-373, A-379, A-397 and A-398) were isolated from bleached coral Madracis decactis (scleractinian) in the remote St Peter & St Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. Healthy M. decactis specimens were also surveyed, but no strains were related to them. The novel isolates formed a distinct lineage based on the 16S rRNA, recA, and rpoA gene sequences analysis. Their closest phylogenetic neighbours were Photobacterium rosenbergii, P. gaetbulicola, and P. lutimaris, sharing 96.6 to 95.8% 16S rRNA gene sequence similarity. The novel species can be differentiated from the closest neighbours by several phenotypic and chemotaxonomic markers. It grows at pH 11, produces tryptophane deaminase, presents the fatty acid C18:0, but lacks C16:0 iso. The whole cell protein profile, based in MALDI-TOF MS, distinguished the strains of the novel species among each other and from the closest neighbors. In addition, we are releasing the whole genome sequence of the type strain. The name Photobacterium sanctipauli sp. nov. is proposed for this taxon. The G + C content of the type strain A-394T (= LMG27910T = CAIM1892T) is 48.2 mol%.


PeerJ | 2015

Niche distribution and influence of environmental parameters in marine microbial communities: a systematic review

Felipe H. Coutinho; Pedro M. Meirelles; Ana Paula B. Moreira; Rodolfo Paranhos; Bas E. Dutilh; Fabiano L. Thompson

Associations between microorganisms occur extensively throughout Earth’s oceans. Understanding how microbial communities are assembled and how the presence or absence of species is related to that of others are central goals of microbial ecology. Here, we investigate co-occurrence associations between marine prokaryotes by combining 180 new and publicly available metagenomic datasets from different oceans in a large-scale meta-analysis. A co-occurrence network was created by calculating correlation scores between the abundances of microorganisms in metagenomes. A total of 1,906 correlations amongst 297 organisms were detected, segregating them into 11 major groups that occupy distinct ecological niches. Additionally, by analyzing the oceanographic parameters measured for a selected number of sampling sites, we characterized the influence of environmental variables over each of these 11 groups. Clustering organisms into groups of taxa that have similar ecology, allowed the detection of several significant correlations that could not be observed for the taxa individually.


International Journal of Systematic and Evolutionary Microbiology | 2012

Vibrio alfacsensis sp. nov., isolated from marine organisms

Bruno Gomez-Gil; Ana Roque; Luciane A. Chimetto; Ana Paula B. Moreira; Elke Lang; Fabiano L. Thompson

Five strains (CAIM 1831(T), CAIM 1832, CAIM 1833, CAIM 1834 and CAIM 1836) were isolated from cultured sole (Solea senegalensis) in two regions of Spain, two strains (CAIM 404 and CAIM 1294) from wild-caught spotted rose snapper (Lutjanus guttatus) in Mexico, and one strain (CAIM 1835) from corals in Brazil. The 16S rRNA gene sequences of the novel isolates showed similarity to Vibrio ponticus (98.2-98.3%, GenBank accession no. AJ630103) and to a lesser degree to Vibrio furnissii (97.2-97.3%, X76336) and to Vibrio fluvialis (96.9-97.1%, X74703). Multilocus sequence analysis clustered these strains closely together and clearly separated them from phylogenetically related species of the genus Vibrio. Genomic fingerprinting by rep-PCR clustered the novel strains according to their geographical origin. Phenotypic analyses showed a large variation among the new strains, but many tests enabled them to be differentiated from other species of the genus Vibrio. The mean ΔT(m) values between the strains analysed here and closely related type strains were above 6.79 °C. The values between the novel isolates were below 2.35 °C, well outside the limit suggested for the delineation of a bacterial species. The phenotypic and genotypic data presented here clearly place these new strains as a coherent group within the genus Vibrio, for which we propose the name Vibrio alfacsensis sp. nov. with CAIM 1831(T) ( = DSM 24595(T) = S277(T)) as the type strain.

Collaboration


Dive into the Ana Paula B. Moreira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciane A. Chimetto Tonon

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana M. Fróes

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Rodolfo Paranhos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Rodrigo L. Moura

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Eduardo Hajdu

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Gizele D. Garcia

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge