Gizele D. Garcia
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gizele D. Garcia.
PLOS ONE | 2012
Thiago Bruce; Pedro M. Meirelles; Gizele D. Garcia; Rodolfo Paranhos; Carlos Eduardo Rezende; Rodrigo L. Moura; Ronaldo-Francini Filho; Ericka Oliveira Cavalcanti Coni; Ana Tereza Ribeiro de Vasconcelos; Gilberto Amado Rodrigues da Cunha Filho; Mark Hatay; Robert Schmieder; Robert Edwards; Elizabeth A. Dinsdale; Fabiano L. Thompson
The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the “paper park” of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens.
Microbial Ecology | 2013
Gizele D. Garcia; Gustavo B. Gregoracci; Eidy de O. Santos; Pedro M. Meirelles; Genivaldo G. Z. Silva; Robert Edwards; Tomoo Sawabe; Kazuyoshi Gotoh; Shota Nakamura; Tetsuya Iida; Rodrigo L. Moura; Fabiano L. Thompson
Coral health is under threat throughout the world due to regional and global stressors. White plague disease (WP) is one of the most important threats affecting the major reef builder of the Abrolhos Bank in Brazil, the endemic coral Mussismilia braziliensis. We performed a metagenomic analysis of healthy and WP-affected M. braziliensis in order to determine the types of microbes associated with this coral species. We also optimized a protocol for DNA extraction from coral tissues. Our taxonomic analysis revealed Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria, and Actinomycetes as the main groups in all healthy and WP-affected corals. Vibrionales, members of the Cytophaga–Flavobacterium–Bacteroides complex, Rickettsiales, and Neisseriales were more abundant in the WP-affected corals. Diseased corals also had more eukaryotic metagenomic sequences identified as Alveolata and Apicomplexa. Our results suggest that WP disease in M. braziliensis is caused by a polymicrobial consortium.
PeerJ | 2014
Cintia P. J. Rua; Amaro E. Trindade-Silva; Luciana R. Appolinario; Tainá Venas; Gizele D. Garcia; Lucas S. Carvalho; Alinne Lima; Ricardo Henrique Kruger; Renato Crespo Pereira; Roberto G. S. Berlinck; Rogerio Valle; Cristiane C. Thompson; Fabiano L. Thompson
Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32), Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12), and Ruegeria (N = 8) were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.
Molecular Ecology | 2016
Gizele D. Garcia; Eidy de O. Santos; Gabriele V. Sousa; Russolina B. Zingali; Cristiane C. Thompson; Fabiano L. Thompson
Infectious diseases such as white plague syndrome (WPS) and black band disease (BBD) have caused massive coral loss worldwide. We performed a metaproteomic study on the Abrolhos coral Mussismilia braziliensis to define the types of proteins expressed in healthy corals compared to WPS‐ and BBD‐affected corals. A total of 6363 MS/MS spectra were identified as 361 different proteins. Healthy corals had a set of proteins that may be considered markers of holobiont homoeostasis, including tubulin, histone, Rab family, ribosomal, peridinin–chlorophyll a‐binding protein, F0F1‐type ATP synthase, alpha‐iG protein, calmodulin and ADP‐ribosylation factor. Cnidaria proteins found in healthy M. braziliensis were associated with Cnidaria–Symbiodinium endosymbiosis and included chaperones (hsp70, hsp90 and calreticulin), structural and membrane modelling proteins (actin) and proteins with functions related to intracellular vesicular traffic (Rab7 and ADP‐ribosylation factor 1) and signal transduction (14‐3‐3 protein and calmodulin). WPS resulted in a clear shift in the predominance of proteins, from those related to aerobic nitrogen‐fixing bacteria (i.e. Rhizobiales, Sphingomonadales and Actinomycetales) in healthy corals to those produced by facultative/anaerobic sulphate‐reducing bacteria (i.e. Enterobacteriales, Alteromonadales, Clostridiales and Bacteroidetes) in WPS corals. BBD corals developed a diverse community dominated by cyanobacteria and sulphur cycle bacteria. Hsp60, hsp90 and adenosylhomocysteinase proteins were produced mainly by cyanobacteria in BBD corals, which is consistent with elevated oxidative stress in hydrogen sulphide‐ and cyanotoxin‐rich environments. This study demonstrates the usefulness of metaproteomics for gaining better comprehension of coral metabolic status in health and disease, especially in reef systems such as the Abrolhos that are suffering from the increase in global and local threatening events.
Microbes and Environments | 2012
Vânia Lúcia da Silva; Natália Cândido Caçador; Carolina dos Santos Fernandes da Silva; Cláudia Oliveira Fontes; Gizele D. Garcia; Jacques Robert Nicoli; Cláudio Galuppo Diniz
Enterococcus are emerging as important putative pathogens resistant to chemicals that are widely released into the environment, and urban pigeons might act as a natural reservoir contributing to the spread of resistant strains. This study aimed to evaluate the occurrence of Enterococcus in pigeon feces and their antimicrobial and toxic metal susceptibility. Bacteria were isolated and identified from 150 fresh feces by phenotypic and genetic techniques. Antimicrobial and toxic metal susceptibility was determined by the agar dilution method, and the multiple antibiotic resistance index (MAR) was calculated. Out of 120 isolates, no resistance was observed against penicillin and vancomycin, but was observed against gentamicin (55.8%), chloramphenicol (21.7%), tetracycline (13.3%), ciprofloxacin (8.4%) and rifampin (2.5%). 18.3% presented a MAR index ≥0.2, ranging between 0.14 to 0.57, indicating resistance to more than one antimicrobial. All samples were tolerant to >1024 μg mL−1 zinc and chromium. Minimal inhibitory concentration (MIC) of 1,024 μg mL−1 was observed for copper (100%) and nickel (71.4%). Mercury inhibited 88.4% at 32 μg mL−1 and the MIC for cadmium ranged from 0.125–128 μg mL−1. Since pigeons were found to harbor drug-resistant Enterococcus, our data support that their presence in the urban environment may contribute to the spread of resistance, with an impact on public health.
PeerJ | 2015
Luciane A. Chimetto Tonon; Bruno Sergio de O. Silva; Ana Paula B. Moreira; Cecilia Valle; Nelson Alves; Giselle Cavalcanti; Gizele D. Garcia; Rubens M. Lopes; Ronaldo B. Francini-Filho; Rodrigo L. Moura; Cristiane C. Thompson; Fabiano L. Thompson
We analyzed the diversity and population structure of the 775 Vibrio isolates from different locations of the southwestern Atlantic Ocean (SAO), including St. Peter and St. Paul Archipelago (SPSPA), Abrolhos Bank (AB) and the St. Sebastian region (SS), between 2005 and 2010. In this study, 195 novel isolates, obtained from seawater and major benthic organisms (rhodoliths and corals), were compared with a collection of 580 isolates previously characterized (available at www.taxvibrio.lncc.br). The isolates were distributed in 8 major habitat spectra according to AdaptML analysis on the basis of pyrH phylogenetic reconstruction and ecological information, such as isolation source (i.e., corals: Madracis decactis, Mussismilia braziliensis, M. hispida, Phyllogorgia dilatata, Scolymia wellsi; zoanthids: Palythoa caribaeorum, P. variabilis and Zoanthus solanderi; fireworm: Hermodice carunculata; rhodolith; water and sediment) and sampling site regions (SPSPA, AB and SS). Ecologically distinct groups were discerned through AdaptML, which finds phylogenetic groups that are significantly different in their spectra of habitat preferences. Some habitat spectra suggested ecological specialization, with habitat spectra 2, 3, and 4 corresponding to specialization on SPSPA, AB, and SS, respectively. This match between habitat and location may reflect a minor exchange of Vibrio populations between geographically isolated benthic systems. Moreover, we found several widespread Vibrio species predominantly from water column, and different populations of a single Vibrio species from H. carunculata in ecologically distinct groups (H-1 and H-8 respectively). On the other hand, AdaptML detected phylogenetic groups that are found in both the benthos and in open water. The ecological grouping observed suggests dispersal and connectivity between the benthic and pelagic systems in AB. This study is a first attempt to characterize the biogeographic distribution of vibrios in both seawater and several benthic hosts in the SAO. The benthopelagic coupling observed here stands out the importance of vibrios in the global ocean health.
Microbial Ecology | 2015
Arthur W. Silva-Lima; Juline M. Walter; Gizele D. Garcia; Naiara Ramires; Glaucia Ank; Pedro M. Meirelles; Alberto Nobrega; Inacio D. Siva-Neto; Rodrigo L. Moura; Paulo S. Salomon; Cristiane C. Thompson; Fabiano L. Thompson
Corals of genus Mussismilia (Mussidae) are one of the oldest extant clades of scleractinians. These Neogene relicts are endemic to the Brazilian coast and represent the main reef-building corals in the Southwest Atlantic Ocean (SAO). The relatively low-diversity/high-endemism SAO coralline systems are under rapid decline from emerging diseases and other local and global stressors, but have not been severely affected by coral bleaching. Despite the biogeographic significance and importance for understanding coral resilience, there is scant information about the diversity of Symbiodinium in this ocean basin. In this study, we established the first culture collections of Symbiodinium from Mussismilia hosts, comprising 11 isolates, four of them obtained by fluorescent-activated cell sorting (FACS). We also analyzed Symbiodinium diversity directly from Mussismilia tissue samples (N = 16) and characterized taxonomically the cultures and tissue samples by sequencing the dominant ITS2 region. Symbiodinium strains A4, B19, and C3 were detected. Symbiodinium C3 was predominant in the larger SAO reef system (Abrolhos), while Symbiodinium B19 was found only in deep samples from the oceanic Trindade Island. Symbiodinium strains A4 and C3 isolates were recovered from the same Mussismilia braziliensis coral colony. In face of increasing threats, these results indicate that Symbiodinium community dynamics shall have an important contribution for the resilience of Mussismilia spp. corals.
PeerJ | 2017
Kevin Walsh; J. Matthew Haggerty; Michael P. Doane; John J. Hansen; Megan M. Morris; Ana Paula B. Moreira; Louisi de Oliveira; Luciana Leomil; Gizele D. Garcia; Fabiano L. Thompson; Elizabeth A. Dinsdale
As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis, (2) fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.
Genome Announcements | 2017
Bruno Sergio de O. Silva; Maria S. Nóbrega; Luciana Leomil; Diogo A. Tschoeke; Gizele D. Garcia; Graciela M. Dias; Cristiane C. Thompson; Fabiano L. Thompson
ABSTRACT We present here the draft genome sequence of Pseudoalteromonas sp. strain PAB 2.2, isolated from water of Parcel de Abrolhos coral reef (17°57′32.7″; 38°30′20.3″), on Abrolhos Bank, at a depth of 12 m. The assembly consists of 4,434,635 bp and contains 40 contigs, with a G+C content of 41.60%.
Remote Sensing Applications: Society and Environment | 2018
Claudia Y. Omachi; Sacha M.O. Siani; Felipe Murai Chagas; Mario Luiz Mascagni; Marcelle Cordeiro; Gizele D. Garcia; Cristiane C. Thompson; Eduardo Siegle; Fabiano L. Thompson