Ana Paula de Lima Batista
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Paula de Lima Batista.
Journal of Hazardous Materials | 2010
Hudson W.P. Carvalho; Ana Paula de Lima Batista; Peter Hammer; Teodorico C. Ramalho
In this work the effect of doping concentration and depth profile of Cu atoms on the photocatalytic and surface properties of TiO(2) films were studied. TiO(2) films of about 200 nm thickness were deposited on glass substrates on which a thin Cu layer (5 nm) was deposited. The films were annealed during 1s to 100°C and 400°C, followed by chemical etching of the Cu film. The grazing incidence X-ray fluorescence measurements showed a thermal induced migration of Cu atoms to depths between 7 and 31 nm. The X-ray photoelectron spectroscopy analysis detected the presence of TiO(2), Cu(2)O and Cu(0) phases and an increasing Cu content with the annealing temperature. The change of the surface properties was monitored by the increasing red-shift and absorption of the ultraviolet-visible spectra. Contact angle measurements revealed the formation of a highly hydrophilic surface for the film having a medium Cu concentration. For this sample photocatalytic assays, performed by methylene blue discoloration, show the highest activity. The proposed mechanism of the catalytic effect, taking place on Ti/Cu sites, is supported by results obtained by theoretical calculations.
Journal of Physical Chemistry A | 2011
Ana Paula de Lima Batista; de Oliveira-Filho Ag; Fernando R. Ornellas
High-level CASSCF/MRCI calculations with a quintuple-ζ quality basis set are reported by characterizing for the first time a manifold of electronic states of the CAs radical yet to be investigated experimentally. Along with the potential energy curves and the associated spectroscopic constants, the dipole moment functions for selected electronic states as well as the transition dipole moment functions for the most relevant electronic transitions are also presented. Estimates of radiative transition probabilities and lifetimes complement this investigation, which also assesses the effect of spin-orbit interaction on the A (2)Π state. Whenever pertinent, comparisons of similarities and differences with the isovalent CN and CP radicals are made.
Journal of Physical Chemistry B | 2016
Ana Paula de Lima Batista; Federico Zahariev; Igor I. Slowing; Ataualpa A. C. Braga; Fernando R. Ornellas; Mark S. Gordon
The aldol reaction catalyzed by an amine-substituted mesoporous silica nanoparticle (amine-MSN) surface was investigated using a large molecular cluster model (Si392O958C6NH361) combined with the surface integrated molecular orbital/molecular mechanics (SIMOMM) and fragment molecular orbital (FMO) methods. Three distinct pathways for the carbinolamine formation, the first step of the amine-catalyzed aldol reaction, are proposed and investigated in order to elucidate the role of the silanol environment on the catalytic capability of the amine-MSN material. The computational study reveals that the most likely mechanism involves the silanol groups actively participating in the reaction, forming and breaking covalent bonds in the carbinolamine step. Therefore, the active participation of MSN silanol groups in the reaction mechanism leads to a significant reduction in the overall energy barrier for the carbinolamine formation. In addition, a comparison between the findings using a minimal cluster model and the Si392O958C6NH361 cluster suggests that the use of larger models is important when heterogeneous catalysis problems are the target.
ACS Omega | 2017
Ana Paula de Lima Batista; Antonio G. S. de Oliveira-Filho; Sérgio E. Galembeck
In this article, triazolylidene-derived N-heterocyclic olefins (trNHOs) are designed using computational quantum tools, and their potential to promote CO2 sequestration is tested and discussed in detail. The low barrier heights related to the trNHO-mediated process indicate that the tailored compounds are very promising for fast CO2 sequestration. The systematic analysis of the presence of distinct substitutes at different N positions of the trNHO ring allows us to rationalize their effect on the carboxylation process and reveal the best N-substituted trNHO systems for CO2 sequestration and improved trNHO carboxylates for faster CO2 capture/release.
Molecular Physics | 2012
Ana Paula de Lima Batista; Fernando R. Ornellas
Electronic states of a new molecular species, SiAs, correlating with the three lowest dissociation channels are characterized at a high-level of theory using the CASSCF/MRCI approach along with quintuple-ξ quality basis sets. This characterization includes potential energy curves, vibrational energy levels, spectroscopic parameters, dipole and transition dipole moment functions, transition probabilities, and radiative lifetimes. For the ground state (X2Π), an assessment of spin–orbit effects and the interaction with the close-lying A2Σ+ state is also reported. Similarities and differences with other isovalent species such as SiP and CAs are also discussed.
Journal of Chemical Physics | 2012
Ana Paula de Lima Batista; José Carlos Barreto de Lima; Klaus Franzreb; Fernando R. Ornellas
We present a detailed theoretical study of the stability of the gas-phase diatomic dications SnF(2+), SnCl(2+), and SnO(2+) using ab initio computer calculations. The ground states of SnF(2+), SnCl(2+), and SnO(2+) are thermodynamically stable, respectively, with dissociation energies of 0.45, 0.30, and 0.42 eV. Whereas SnF(2+) dissociates into Sn(2+) + F, the long range behaviour of the potential energy curves of SnCl(2+) and SnO(2+) is repulsive and wide barrier heights due to avoided crossing act as a kind of effective dissociation energy. Their equilibrium internuclear distances are 4.855, 5.201, and 4.852 a(0), respectively. The double ionisation energies (T(e)) to form SnF(2+), SnCl(2+), and SnO(2+) from their respective neutral parents are 25.87, 23.71, and 25.97 eV. We combine our theoretical work with the experimental results of a search for these doubly positively charged diatomic molecules in the gas phase. SnO(2+) and SnF(2+) have been observed for prolonged oxygen ((16)O(-)) ion beam sputtering of a tin metal foil and of tin (II) fluoride (SnF(2)) powder, respectively, for ion flight times of about 10(-5) s through a magnetic-sector mass spectrometer. In addition, SnCl(2+) has been detected for (16)O(-) ion surface bombardment of stannous (tin (II)) chloride (SnCl(2)) powder. To our knowledge, SnF(2+) is a novel gas-phase molecule, whereas SnCl(2+) had been detected previously by electron-impact ionization mass spectrometry, and SnO(2+) had been observed before by spark source mass spectrometry as well as by atom probe mass spectrometry. We are not aware of any previous theoretical studies of these molecular systems.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 2009
Hudson W.P. Carvalho; Ana Paula de Lima Batista; Teodorico C. Ramalho; Carlos A. Pérez; Angelo Luiz Gobbi
In order to evaluate the interactions between Au/Cu atoms and clean Si(111) surface, we used synchrotron radiation grazing incidence X-ray fluorescence analysis and theoretical calculations. Optimized geometries and energies on different adsorption sites indicate that the binding energies at different adsorption sites are high, suggesting a strong interaction between metal atom and silicon surface. The Au atom showed higher interaction than Cu atom. The theoretical and experimental data showed good agreement.
Journal of Chemical Theory and Computation | 2017
Yuri Alexandre Aoto; Ana Paula de Lima Batista; Andreas Köhn; Antonio G. S. de Oliveira-Filho
With the objective of analyzing which kind of reference data is appropriate for benchmarking quantum chemical approaches for transition metal compounds, we present the following, (a) a collection of 60 transition metal diatomic molecules for which experimentally derived dissociation energies, equilibrium distances, and harmonic vibrational frequencies are known and (b) a composite computational approach based on coupled-cluster theory with basis set extrapolation, inclusion of core-valence correlation, and corrections for relativistic and multireference effects. The latter correction was obtained from internally contracted multireference coupled-cluster (icMRCC) theory. This composite approach has been used to obtain the dissociation energies and spectroscopic constants for the 60 molecules in our data set. In accordance with previous studies on a subset of molecules, we find that multireference corrections are rather small in many cases and CCSD(T) can provide accurate reference values, if the complete basis set limit is explored. In addition, the multireference correction improves the results in cases where CCSD(T) is not a good approximation. For a few cases, however, strong deviations from experiment persist, which cannot be explained by the remaining error in the computational approach. We suggest that these experimentally derived values require careful revision. This also shows that reliable reference values for benchmarking approximate computational methods are not always easily accessible via experiment and accurate computations may provide an alternative way to access them. In order to assess how the choice of reference data affects benchmark studies, we tested 10 DFT functionals for the molecules in the present data set against experimental and calculated reference values. Despite the differences between these two sets of reference values, we found that the ranking of the relative performance of the DFT functionals is nearly independent of the chosen reference.
Journal of Computational Chemistry | 2017
Vitor H. Menezes da Silva; Ana Paula de Lima Batista; Oscar Navarro; Ataualpa A. C. Braga
The regioselectivity of the NHC‐Pd catalyzed Heck coupling reaction between phenyl bromide and styrene has been investigated using the density functional theory, wave‐function (WF)‐based methods and two different sizes of model ligands. In addition to the WF methods, the TPSS‐D3, ω B97X‐D, BP86‐D3, and M06‐L density functionals were reliable approaches to be applied, independently of the basis set. Moreover, the NCI analysis showed that weak interactions are important forces to be taken into account when exploring the regioselectivity of this reaction, mainly when a crowded NHC ligand is present.
Química Nova | 2016
Antonio Gustavo S. de Oliveira Filho; Ana Paula de Lima Batista
This study proposes an activity to introduce scientific programming. In particular, the multidisciplinary concepts of scientific programming, quantum mechanics, and spectroscopy are presented in the study of the electronic spectrum of the I2 molecule. We use Python programming language and the IPython command shell, in particular, for their user friendliness and versatility.
Collaboration
Dive into the Ana Paula de Lima Batista's collaboration.
National Council for Scientific and Technological Development
View shared research outputs