Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Paula Lepique is active.

Publication


Featured researches published by Ana Paula Lepique.


Journal of Immunology | 2003

Critical Role for CXCR4 Signaling in Progenitor Localization and T Cell Differentiation in the Postnatal Thymus

Jason Plotkin; Susan E. Prockop; Ana Paula Lepique; Howard T. Petrie

T cell differentiation in the thymus depends on sequential interactions between lymphoid progenitors and stromal cells in discrete regions of the cortex. Here we show that CXCL12/CXCR4 signaling is absolutely required for proper localization of early progenitors into the cortex and thus for successful steady state differentiation. All early progenitors in the thymus express CXCR4, and its ligand (CXCL12) is expressed only by stromal cells in the cortex, where early progenitors are found. Early progenitors migrate in response to CXCL12 in vitro, while thymus-specific deletion of CXCR4 in vivo results in failed cortical localization and developmental arrest. These findings indicate a crucial and nonredundant role for CXCR4 in facilitating localization of early lymphoid progenitors to tissue regions of the thymus, where lineage commitment and proliferation are controlled.


Carcinogenesis | 2010

The role of inflammation in HPV carcinogenesis

Enrique Boccardo; Ana Paula Lepique; Luisa L. Villa

The role of inflammation in human papillomavirus (HPV) infection and disease is complex since it involves responses capable of preventing initial infections, clearing those ongoing as well as promoting persistence and progression of associated lesions. Avoiding the immune response has been considered a key aspect of HPV persistence which is the main factor leading to HPV-related neoplasia. HPVs have evolved different ways of targeting immune signaling pathways. Moreover, host inflammatory response may promote lesion progression and affect tumor fate by diverse mechanisms including the direct participation of inflammatory cells. In this review, we discuss the interplay between HPV oncogenic proteins and an array of inflammatory responses that ultimately may lead to cancer.


Clinical Cancer Research | 2009

HPV16 Tumor Associated Macrophages Suppress Antitumor T Cell Responses

Ana Paula Lepique; Katia Regina Perez Daghastanli; Iolanda M. Cuccovia; Luisa L. Villa

Purpose: High-risk human papillomavirus (HPV) is the main etiologic factor for cervical cancer. The severity of HPV-associated cervical lesions has been correlated to the number of infiltrating macrophages. The objective of this work is to characterize the role of tumor-associated macrophages (TAM) on the immune cellular response against the tumor. Experimental Design: We used the HPV16 E6- and E7-expressing TC-1 mouse tumor model to study the effect of TAM on T-cell function in vitro, and depleted TAM, using clodronate-containing liposomes, to characterize its role in vivo. Results: TAM, characterized by the positive expression of CD45, F4/80, and CD11b, formed the major population of infiltrating tumor cells. TAM displayed high basal Arginase I activity, producing interleukin-10 (IL-10); they were resistant to iNOSII activity induction, therefore reversion to M1 phenotype, when stimulated in vitro with lipopolysaccharide/IFNγ, indicating an M2 phentoype. In cultures of isolated TAM, TAM induced regulatory phenotype, characterized by IL-10 and Foxp3 expression, and inhibited proliferation of CD8 lymphocytes. In vivo, depletion of TAM inhibited tumor growth and stimulated the infiltration of tumors by HPV16 E749-57-specific CD8 lymphocytes, whereas depletion of Gr1+ tumor-associated cells had no effect. Conclusions: M2-like macrophages infiltrate HPV16-associated tumors causing suppression of antitumor T-cell response, thus facilitating tumor growth. Depletion or phenotype alteration of this population should be considered in immunotherapy strategies.


BMC Immunology | 2010

Interleukin-10 production by tumor infiltrating macrophages plays a role in Human Papillomavirus 16 tumor growth

Aline Bolpetti; João S. Silva; Luisa L. Villa; Ana Paula Lepique

BackgroundHuman Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth.ResultsTC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes.ConclusionsOur data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.


Stem Cells | 2011

Enhanced neural progenitor/stem cells self-renewal via the interaction of stress-inducible protein 1 with the prion protein.

Tiago G. Santos; Iara R. Silva; Bruno Costa-Silva; Ana Paula Lepique; Vilma R. Martins; Marilene H. Lopes

Prion protein (PrPC), when associated with the secreted form of the stress‐inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrPC‐STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild‐type (Prnp+/+) and PrPC‐null (Prnp0/0) mice were maintained for several passages without the loss of self‐renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrPC suggest that they may associate and function as a complex in neurosphere‐derived stem cells. The formation of neurospheres from Prnp0/0 mice was reduced significantly when compared with their wild‐type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrPC, with specific antibodies, impaired Prnp+/+ neurosphere formation without further impairing the formation of Prnp0/0 neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrPC but not in cells from Prnp0/0 mice. The STI1‐PrPC interaction was able to stimulate cell proliferation in the neurosphere‐forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1‐PrPC complex may play a critical role in neural progenitor/stem cells self‐renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development. STEM CELLS 2011;29:1126–1136


Clinical & Developmental Immunology | 2003

Characterization of vascular adhesion molecules that may facilitate progenitor homing in the post-natal mouse thymus.

Ana Paula Lepique; Sharina Palencia; Heikki Irjala; Howard T. Petrie

T cell progenitors derive from the bone marrow but must migrate via bloodstream to the thymus in order to differentiate. The mechanism by which the thymus recruits progenitors from the blood is unknown. It is known, however, that there are receptive and refractory periods for progenitor recruitment and that when cells are imported, they enter the thymus through post-capillary venules. Therefore, recruitment is an active process temporally and spatially regulated. In order to characterize the mechanism of recruitment, we evaluated vascular signals known to regulate leukocyte extravasation, with respect to their intrathymic location and temporal fluctuations. We find that CD34, MECA79, VCAM-1, ICAM-1 and VAP-1 are all expressed in thymic blood vessels. MECA79 and VAP-1 appear to be specific for post-capillary venules, while ICAM-1 and VCAM-1 are also found on intrathymic stromal cells. MAdCAM is also expressed in the thymus, but is not associated with vascular tissues. Only MECA79 is upregulated during recruitment peaks, suggesting a role for this molecule in the periodicity of recruitment. Together, these studies reveal potential roles for l-selectin ligands, VCAM-1, ICAM-1 and VAP-1 in progenitor recruitment to the thymus, and implicate the presence of other periodic signals, such as chemokines and cytokines, that cooperate to execute this essential function.


Brazilian Journal of Medical and Biological Research | 2000

Proliferative signaling initiated in ACTH receptors

Claudimara F.P. Lotfi; Ana Paula Lepique; Fábio L. Forti; Telma T. Schwindt; Claudia B. Eichler; M. O. Santos; I. T. Rebustini; G. N.M. Hajj; Luiz Juliano; Hugo A. Armelin

This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0-->G1-->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a) rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK) (2 to 10 min), b) transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min), c) induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d) onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.


Immunity, inflammation and disease | 2014

HPV associated tumor cells control tumor microenvironment and leukocytosis in experimental models

Simone Cardozo Stone; Renata Ariza Marques Rossetti; Aleida Maria Lima; Ana Paula Lepique

Human papillomavirus (HPV) is the main etiological factor for cervical cancer development. HPV is also associated with other anogenital and oropharyngeal tumors. HPV associated tumors are frequent and constitute a public health problem, mainly in developing countries. Therapy against such tumors is usually excisional, causing iatrogenic morbidity. Therefore, development of strategies for new therapies is desirable. The tumor microenvironment is essential for tumor growth, where inflammation is an important component, displaying a central role in tumor progression. Inflammation may be a causal agent, suppressor of anti‐tumor T cell responses, or may have a role in angiogenesis, drug resistance, and metastasis. The aim of this work was to investigate the role of HPV transformed cells in the tumor microenvironment and tumor effects on myeloid populations in lymphoid organs in the host. We used experimental models, where we injected cervical cancer derived cell lines in immunodeficient mice, comparing HPV positive, SiHa, and HeLa cells (HPV 16 and HPV18, respectively), with HPV negative cell line, C33A. Our data shows that HPV positive cell lines were more efficient than the HPV negative cell line in leukocyte recruitment to the tumor microenvironment and increase in myeloid cell proliferation in the bone marrow and spleen. We also observed that HPV positive cells lines expressed significantly higher levels of IL‐6 and IL‐8, while C33A expressed significantly higher levels of IL‐16 and IL‐17. Finally, in spite of cytokine secretion by tumor cells, leukocytes infiltrating SiHa and HeLa tumors displayed almost negligible STAT3 and no NFκB phosphorylation. Only the inflammatory infiltrate of C33A tumors had NFκB and STAT3 activated isoforms. Our results indicate that, although from the same anatomical site, the uterine cervix, these cell lines display important differences regarding inflammation. These results are important for the design of immunotherapies against cervical cancer, and possibly against HPV associated tumors in other anatomical sites.


Memorias Do Instituto Oswaldo Cruz | 2009

HPV vaccination: the beginning of the end of cervical cancer? - A Review

Ana Paula Lepique; Tatiana Rabachini; Luisa L. Villa

Human papillomavirus (HPV) is responsible for all cases of cervical cancer, as well as a great percentage of other anogenital tumors and oropharyngeal tumors. Since the main etiologic factor for these diseases is a virus, prophylactic measures are the best way to reduce the burden caused by the infection and associated disease. This review brings up to date information on the two commercially available prophylactic HPV vaccines against HPV, as well as presenting the ongoing research on HPV peptide, protein and dendritic cell based therapeutic vaccines.


Endocrine Research | 1996

Regulation of growth by acth in the Y-1 line of mouse adrenocortical cells

Hugo A. Armelin; Claudimara F.P. Lotfi; Ana Paula Lepique

Y-1 adrenal cells were cell cycle arrested by serum starvation to characterize a G0-->G1-->S transition in these cells. Cycle arrested Y-1 cells start to enter S phase 8h after serum feeding, reaching more than 90% cells synthesizing DNA by 24h. ACTH displays a dual effect in the G0-->G1-->S transition: 2h ACTH treatment stimulates DNA synthesis initiation, but longer treatments inhibit S phase entry. This dual effect of ACTH is similar to the antagonistic actions of PMA (phorbol-12-miristate-13-acetate) on the G0-->G1-->S transition. However ACTH and PMA are likely to have different mechanisms of action. ACTH inhibitory effect requires PKA, whereas PMA inhibitory effect is not dependent on PKA. ACTH induces the proto-oncogenes c-fos and c-jun, but inhibits the expression of the c-myc proto-oncogene. PMA, on the other hand, induces equally well c-fos, c-jun and c-myc. We hypothesize that ACTH promotes G0-->G1 transition by induction of c-fos and c-jun and blocks G1-->S transition by c-myc inhibition.

Collaboration


Dive into the Ana Paula Lepique's collaboration.

Top Co-Authors

Avatar

Luisa L. Villa

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia Jancar

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge