Fábio L. Forti
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fábio L. Forti.
Journal of Biological Chemistry | 2012
Luciana A. Pescatore; Diego Bonatto; Fábio L. Forti; Amine Sadok; Hervé Kovacic; Francisco R.M. Laurindo
Background: Protein disulfide isomerase (PDI) regulates Nox NADPH oxidase activity. Results: PDI silencing promoted decreased platelet-derived growth factor-induced reactive oxygen species, Nox1 expression, and cell migration. Mechanism involves disruptions of: Rac1/RhoA activation, cytoskeletal organization, and PDI/RhoGDI interaction. Conclusion: PDI is required for redox-mediated vascular smooth muscle migration. Significance: ER redox chaperone PDI adds a novel regulatory level to redox/GTPase-related cell migration. Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration.
Brazilian Journal of Medical and Biological Research | 2000
Claudimara F.P. Lotfi; Ana Paula Lepique; Fábio L. Forti; Telma T. Schwindt; Claudia B. Eichler; M. O. Santos; I. T. Rebustini; G. N.M. Hajj; Luiz Juliano; Hugo A. Armelin
This article reviews recent results of studies aiming to elucidate modes of integrating signals initiated in ACTH receptors and FGF2 receptors, within the network system of signal transduction found in Y1 adrenocortical cells. These modes of signal integration should be central to the mechanisms underlying the regulation of the G0-->G1-->S transition in the adrenal cell cycle. FGF2 elicits a strong mitogenic response in G0/G1-arrested Y1 adrenocortical cells, that includes a) rapid and transient activation of extracellular signal-regulated kinases-mitogen-activated protein kinases (ERK-MAPK) (2 to 10 min), b) transcription activation of c-fos, c-jun and c-myc genes (10 to 30 min), c) induction of c-Fos and c-Myc proteins by 1 h and cyclin D1 protein by 5 h, and d) onset of DNA synthesis stimulation within 8 h. ACTH, itself a weak mitogen, interacts with FGF2 in a complex manner, blocking the FGF2 mitogenic response during the early and middle G1 phase, keeping ERK-MAPK activation and c-Fos and cyclin D1 induction at maximal levels, but post-transcriptionally inhibiting c-Myc expression. c-Fos and c-Jun proteins are mediators in both the strong and the weak mitogenic responses respectively triggered by FGF2 and ACTH. Induction of c-Fos and stimulation of DNA synthesis by ACTH are independent of PKA and are inhibited by the PKC inhibitor GF109203X. In addition, ACTH is a poor activator of ERK-MAPK, but c-Fos induction and DNA synthesis stimulation by ACTH are strongly inhibited by the inhibitor of MEK1 PD98059.
Genesis | 2011
Ricardo Moraes Borges; Marcelo Lazzaron Lamers; Fábio L. Forti; Marinilce Fagundes Santos; Chao Yun Irene Yan
Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho‐ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan‐Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49:368–379, 2011.
Endocrine Research | 2000
Ana Paula Lepique; Fábio L. Forti; Miriam S. Moraes; Hugo A. Armelin
In G0/G1 cell cycle arrested mouse Y1 adrenocortical tumor cells ACTH39, a weak mitogen and strong anti-mitogenic agent, blocks FGF2 mitogenic activity at G1 phase, keeping untouched ERK-MAPK activation and c-Fos protein induction. Here we report two anti-mitogenic mechanisms initiated in ACTH receptors and mediated by cAMP/PKA: a) post-transcriptional down regulation of c-Myc protein; b) dephosphorylation of AKT/PKB. In Y-1 cells the activity of the Mad/Max/Myc network of transcription factors seems to be regulated by c-Myc levels. FGF2 induces c-myc gene and stabilizes c-Myc protein by a process dependent on ERK-MAPK (PD98059 sensitive), but not on PI3K (Wortmannin resistant). ACTH39, on the other hand, causes rapid decrease in c-Myc levels induced by FGF2 in wild type Y1 cells, but not in PKA-deficient Y1 clones. The ACTH inhibition of DNA synthesis stimulated by FGF2 is reversed by transient transfection and induction of the MycER chimera (fusion of c-Myc and estrogen-receptor), suggesting that c-Myc down regulation is an efficient anti-mitogenic mechanism activated by ACTH. Y1 cells display high constitutive levels of AKT/PKB, that is dependent on elevated RasGTP. FGF2 up regulates RasGTP, PI3K and AKT/PKB. ACTH antagonizes this mitogenic effect of FGF2, promoting rapid dephosphorylation of AKT/PKB.
Cancer Research | 2008
Érico T. Costa; Fábio L. Forti; Tatiana G.F. Matos; Alexandre Dermargos; Fábio Nakano; Jacqueline Salotti; Kátia M. Rocha; Paula Fontes Asprino; Celina K. Yoshihara; Marianna M. Koga; Hugo A. Armelin
Fibroblast growth factor 2 (FGF2) is considered to be a bona fide oncogenic factor, although results from our group and others call this into question. Here, we report that exogenous recombinant FGF2 irreversibly inhibits proliferation by inducing senescence in Ras-dependent malignant mouse cells, but not in immortalized nontumorigenic cell lines. We report the following findings in K-Ras-dependent malignant Y1 adrenocortical cells and H-Ras V12-transformed BALB-3T3 fibroblasts: (a) FGF2 inhibits clonal growth and tumor onset in nude and immunocompetent BALB/c mice, (b) FGF2 irreversibly blocks the cell cycle, and (c) FGF2 induces the senescence-associated beta-galactosidase with no accompanying signs of apoptosis or necrosis. The tyrosine kinase inhibitor PD173074 completely protected malignant cells from FGF2. In Y1 adrenal cells, reducing the constitutively high levels of K-Ras-GTP using the dominant-negative RasN17 mutant made cells resistant to FGF2 cytotoxicity. In addition, transfection of the dominant-negative RhoA-N19 into either Y1 or 3T3-B61 malignant cell lines yielded stable clonal transfectants that were unable to activate RhoA and were resistant to the FGF2 stress response. We conclude that in Ras-dependent malignant cells, FGF2 interacts with its cognate receptors to trigger a senescence-like process involving RhoA-GTP. Surprisingly, attempts to select FGF2-resistant cells from the Y1 and 3T3-B61 cell lines yielded only rare clones that (a) had lost the overexpressed ras oncogene, (b) were dependent on FGF2 for proliferation, and (c) were poorly tumorigenic. Thus, FGF2 exerted a strong negative selection that Ras-dependent malignant cells could rarely overcome.
Molecular and Cellular Biochemistry | 2015
Gisele Espinha; Juliana H. Osaki; Yuli T. Magalhaes; Fábio L. Forti
Abstract Rac1 GTPase controls essential cellular functions related to the cytoskeleton, such as motility and adhesion. Rac1 is overexpressed in many tumor cells, including breast cancers, where it is also involved in the proliferation and checkpoint control necessary for the cell’s recovery after exposure to ionizing radiation. However, its role in DNA damage and repair remains obscure in other tumor cells and under different genotoxic conditions. Here, we compare HeLa cells with mutants exogenously expressing a dominant-negative Rac1 (HeLa-Rac1-N17) by their responses to DNA damage induced by gamma or UV radiation. In HeLa cells, these treatments led to increased levels of active Rac1 (Rac1-GTP) and of stress fibers, with a diminished ability to migrate compared to untreated cells. However, the reduction of Rac1-GTP in Rac1-N17-deficient clones resulted in much higher levels of polymerized stress fibers accompanied by a strong impairment of cell migration, even after both radiation treatments. With regard to proliferation and genomic stability, dominant-negative Rac1 cells were more sensitive to gamma and UV radiation, exhibiting reduced proliferation and survival consistent with increased DNA damage and delayed or reduced DNA repair observed in this Rac1-deficient clone. The DNA damage response, as indicated by pH2AX and pChk1 levels, was increased in HeLa cells but was not effectively triggered in the Rac1-N17 clone after radiation treatment, which is likely the main cause of DNA damage accumulation. These data suggest that Rac1 GTPase plays an important role in signaling and contributes to the sensitivity of cervical cancer cells under UV or gamma radiation treatments.
Journal of Biological Chemistry | 2014
Diogo M.L.P. Cavalcanti; Leandro M. Castro; José C. Rosa Neto; Marília Seelaender; Rodrigo X. Neves; Vitor Oliveira; Fábio L. Forti; Leo K. Iwai; Fabio C. Gozzo; Mihail Todiras; Ines Schadock; Carlos C. Barros; Michael Bader; Emer S. Ferro
Background: Neurolysin is known to cleave several bioactive peptides in vitro. Results: Neurolysin knock-out mice showed increased glucose tolerance, insulin sensitivity, and gluconeogenesis, which likely relates to increased expression of both specific liver mRNAs and intracellular peptides. Conclusion: Neurolysin plays a role in energy metabolism. Significance: Neurolysin could be used as a therapeutic target to counteract insulin resistance. The oligopeptidase neurolysin (EC 3.4.24.16; Nln) was first identified in rat brain synaptic membranes and shown to ubiquitously participate in the catabolism of bioactive peptides such as neurotensin and bradykinin. Recently, it was suggested that Nln reduction could improve insulin sensitivity. Here, we have shown that Nln KO mice have increased glucose tolerance, insulin sensitivity, and gluconeogenesis. KO mice have increased liver mRNA for several genes related to gluconeogenesis. Isotopic label semiquantitative peptidomic analysis suggests an increase in specific intracellular peptides in gastrocnemius and epididymal adipose tissue, which likely is involved with the increased glucose tolerance and insulin sensitivity in the KO mice. These results suggest the exciting new possibility that Nln is a key enzyme for energy metabolism and could be a novel therapeutic target to improve glucose uptake and insulin sensitivity.
Journal of Biological Chemistry | 2014
Christiane B. de Araujo; Lilian C. Russo; Leandro M. Castro; Fábio L. Forti; Elisabete R. do Monte; Vanessa Rioli; Fabio C. Gozzo; Alison Colquhoun; Emer S. Ferro
Background: Intracellular peptides probably regulate several biological processes. Results: pep5 derived from G1/S cyclin D2 specifically increases during the S phase of the cell cycle and, reintroduced into the cell, induces apoptosis and necrosis. Conclusion: pep5 has potential therapeutic applications and could have biological functions. Significance: pep5 discovery advances our understanding of limited proteolysis. Intracellular peptides are constantly produced by the ubiquitin-proteasome system, and many are probably functional. Here, the peptide WELVVLGKL (pep5) from G1/S-specific cyclin D2 showed a 2-fold increase during the S phase of HeLa cell cycle. pep5 (25–100 μm) induced cell death in several tumor cells only when it was fused to a cell-penetrating peptide (pep5-cpp), suggesting its intracellular function. In vivo, pep5-cpp reduced the volume of the rat C6 glioblastoma by almost 50%. The tryptophan at the N terminus of pep5 is essential for its cell death activity, and N terminus acetylation reduced the potency of pep5-cpp. WELVVL is the minimal active sequence of pep5, whereas Leu-Ala substitutions totally abolished pep5 cell death activity. Findings from the initial characterization of the cell death/signaling mechanism of pep5 include caspase 3/7 and 9 activation, inhibition of Akt2 phosphorylation, activation of p38α and -γ, and inhibition of proteasome activity. Further pharmacological analyses suggest that pep5 can trigger cell death by distinctive pathways, which can be blocked by IM-54 or a combination of necrostatin-1 and q-VD-OPh. These data further support the biological and pharmacological potential of intracellular peptides.
Endocrine-related Cancer | 2007
Fábio L. Forti; Hugo A. Armelin
Arginine vasopressin (AVP), a vasoactive peptide hormone that binds to three G-protein coupled receptors (V1R, V2R, and V3R), has long been known to activate V1R and elicit mitogenesis in several cell types, including adrenal glomerulosa cells. However, in the mouse Y1 adrenocortical malignant cell line, AVP triggers not only a canonical mitogenic response but also novel RhoA-GTP-dependent mechanisms which downregulate cyclin D1, irreversibly inhibiting K-ras oncogene-driven proliferation. In Y1 cells, AVP blocks cyclin D1 expression, induces senescence-associated beta-galactosidase (SAbeta-Gal) and inhibits proliferation. However, ectopic expression of cyclin D1 renders Y1 cells resistant to both SAbeta-Gal induction and proliferation inhibition by AVP. In addition, ectopic expression of the dominant negative RhoAN19 mutant blocks RhoA activation, yielding Y1 cell sub-lines which are no longer susceptible to cyclin D1 downregulation, SAbeta-Gal induction, or proliferation inhibition by AVP. Furthermore, inhibiting RhoA with C3 exoenzyme protects Y1 cells from AVP proliferation inhibition and SAbeta-Gal induction. On the other hand, AVP treatment does not activate caspases 3 and 7, and the caspase inhibitor Ac-DEVD-CMK does not protect Y1 cells from proliferation inhibition by AVP, implying that AVP does not trigger apoptosis. These results underline a pivotal survival activity of cyclin D1 that protects K-ras oncogene-dependent malignant cells from senescence.
Endocrine Research | 2000
Fábio L. Forti; Hugo A. Armelin
Mouse Y1 adrenocortical tumor cells harbor amplified and overexpressed c-Ki-ras gene, displaying relatively high constitutive levels of Ras•P. Here we report that Y1 cells also constitutively display high levels of phosphorylated AKT/PKB, that are dependent on Ras•P and PI3K. ACTH rapidly causes dephosphorylation of AKT/PKB in a cAMP/PKA dependent maner. This ACTH inhibition of the anti-apoptic and mitogenic AKT/PKB pathway is likely to be relevant in ACTH growth inhibitory effects in Y-1 adrenocortical cells.