Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Persson is active.

Publication


Featured researches published by Ana Persson.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Evidence Supporting a Key Role of Lp-PLA2-Generated Lysophosphatidylcholine in Human Atherosclerotic Plaque Inflammation

Isabel Gonçalves; Andreas Edsfeldt; Na Young Ko; Helena Grufman; Katarina Berg; Harry Björkbacka; Mihaela Nitulescu; Ana Persson; Marie Mn Nilsson; Cornelia Prehn; Jerzy Adamski; Jan Nilsson

Objectives—To determine whether the level of lysophosphatidylcholine (lysoPC) generated by lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with severity of inflammation in human atherosclerotic plaques. Elevated plasma Lp-PLA2 is associated with increased cardiovascular risk. Lp-PLA2 inhibition reduces atherosclerosis. Lp-PLA2 hydrolyzes low-density lipoprotein–oxidized phospholipids generating lysoPCs. According to in vitro studies, lysoPCs are proinflammatory but the association between their generation and plaque inflammation remains unknown. Methods and Results—Inflammatory activity in carotid plaques (162 patients) was determined immunohistochemically and by analyzing cytokines in homogenates (multiplex immunoassay). LysoPCs were quantified using mass spectrometry and Lp-PLA2 and the lysoPC metabolite lysophosphatidic acid (LPA) by ELISA. There was a strong correlation among lysoPC 16:0, 18:0, 18:1, LPA, and Lp-PLA2 in plaques. LysoPC 16:0, 18:0, 18:1, LPA, and Lp-PLA2 correlated with interleukin-1&bgr;, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-1&bgr;, regulated on activation normal T-cell expressed and secreted, and tumor necrosis factor-&agr; in plaques. High lysoPC and Lp-PLA2 correlated with increased plaque macrophages and lipids and with low content of smooth muscle cells, whereas LPA only correlated with plaque macrophages. Lp-PLA2, lysoPC 16:0, 18:0, and 18:1, but not LPA were higher in symptomatic than in asymptomatic plaques. Conclusions—The associations among Lp-PLA2, lysoPCs, LPA, and proinflammatory cytokines in human plaques suggest that lysoPCs play a key role in plaque inflammation and vulnerability. Our findings support Lp-PLA2 inhibition as a possible strategy for the prevention of cardiovascular disease.


Stroke | 2012

Soluble Urokinase Plasminogen Activator Receptor is Associated With Inflammation in the Vulnerable Human Atherosclerotic Plaque.

Andreas Edsfeldt; Mihaela Nitulescu; Helena Grufman; Caitriona Grönberg; Ana Persson; Marie Mn Nilsson; Margaretha Persson; Harry Björkbacka; Isabel Gonçalves

Background and Purpose— Recently, plasma soluble urokinase plasminogen activator receptor (suPAR) has gained interest as a marker of cardiovascular risk. suPAR is released through the cleavage of urokinase plasminogen activator receptor (uPAR), which is found in monocytes, activated T-lymphocytes and endothelial cells, all involved in atherosclerosis. suPAR levels have been well studied in plasma, but no studies have focused on suPAR in human atherosclerotic plaques. The aim of this study was to determine whether suPAR measured in the plaque is associated with symptomatic plaques and plaque inflammation. Methods— Plasma and carotid plaques from 162 patients were analyzed. Lipids, collagen, uPAR, and macrophages were measured histologically. Cytokines and suPAR were measured in homogenized plaque extracts using multiplex immunoassay and ELISA, respectively. Plasma levels of suPAR were analysed with ELISA. CD3, CD4, as well as uPAR mRNA expression were assessed with quantitative real-time polymerase chain reaction in plaque homogenates from 123 patients. Results— Plaque and plasma suPAR levels were higher in symptomatic patients compared with asymptomatic patients. Plaque suPAR levels correlated with plaque content of lipids and macrophages and with proinflammatory chemokines and cytokines monocyte chemoattractant protein 1, tumor necrosis factor &agr;, interleukin 1&bgr;, interleukin 6, platelet-derived growth factor AB/BB, monocyte inflammatory protein 1&bgr;, regulated on activation normal T-cell expressed and secreted, and s-CD40L. uPAR mRNA and histological staining for uPAR correlated with plaque content of suPAR. Conclusion— This study shows that suPAR in human carotid plaques and plasma is associated with the presence of symptoms and that plaque suPAR is associated with the vulnerable inflammatory plaque. These findings strengthen the hypothesis of suPAR as a future marker of vulnerable atherosclerotic plaques.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Sphingolipids Contribute to Human Atherosclerotic Plaque Inflammation

Andreas Edsfeldt; Pontus Dunér; Marcus Ståhlman; Inês G. Mollet; Giuseppe Asciutto; Helena Grufman; Mihaela Nitulescu; Ana Persson; Rachel M. Fisher; Olle Melander; Marju Orho-Melander; Jan Borén; Jan Nilsson; Isabel Gonçalves

Objective— Lipids are central to the development of atherosclerotic plaques. Specifically, which lipids are culprits remains controversial, and promising targets have failed in clinical studies. Sphingolipids are bioactive lipids present in atherosclerotic plaques, and they have been suggested to have both proatherogenic and antiatherogenic. However, the biological effects of these lipids remain unknown in the human atherosclerotic plaque. The aim of this study was to assess plaque levels of sphingolipids and investigate their potential association with and contribution to plaque vulnerability. Approach and Results— Glucosylceramide, lactosylceramide, ceramide, dihydroceramide, sphingomyelin, and sphingosine-1-phosphate were analyzed in homogenates from 200 human carotid plaques using mass spectrometry. Inflammatory activity was determined by analyzing plaque levels of cytokines and plaque histology. Caspase-3 was analyzed by ELISA technique. Expression of regulatory enzymes was analyzed with RNA sequencing. Human coronary artery smooth muscle cells were used to analyze the potential role of the 6 sphingolipids as inducers of plaque inflammation and cellular apoptosis in vitro. All sphingolipids were increased in plaques associated with symptoms and correlated with inflammatory cytokines. All sphingolipids, except sphingosine-1-phosphate, also correlated with histological markers of plaque instability. Lactosylceramide, ceramide, sphingomyelin, and sphingosine-1-phosphate correlated with caspase-3 activity. In vitro experiments revealed that glucosylceramide, lactosylceramide, and ceramide induced cellular apoptosis. All analyzed sphingolipids induced an inflammatory response in human coronary artery smooth muscle cells. Conclusions— This study shows for the first time that sphingolipids and particularly glucosylceramide are associated with and are possible inducers of plaque inflammation and instability, pointing to sphingolipid metabolic pathways as possible novel therapeutic targets.Objective— Lipids are central to the development of atherosclerotic plaques. Specifically, which lipids are culprits remains controversial, and promising targets have failed in clinical studies. Sphingolipids are bioactive lipids present in atherosclerotic plaques, and they have been suggested to have both proatherogenic and antiatherogenic. However, the biological effects of these lipids remain unknown in the human atherosclerotic plaque. The aim of this study was to assess plaque levels of sphingolipids and investigate their potential association with and contribution to plaque vulnerability. Approach and Results— Glucosylceramide, lactosylceramide, ceramide, dihydroceramide, sphingomyelin, and sphingosine-1-phosphate were analyzed in homogenates from 200 human carotid plaques using mass spectrometry. Inflammatory activity was determined by analyzing plaque levels of cytokines and plaque histology. Caspase-3 was analyzed by ELISA technique. Expression of regulatory enzymes was analyzed with RNA sequencing. Human coronary artery smooth muscle cells were used to analyze the potential role of the 6 sphingolipids as inducers of plaque inflammation and cellular apoptosis in vitro. All sphingolipids were increased in plaques associated with symptoms and correlated with inflammatory cytokines. All sphingolipids, except sphingosine-1-phosphate, also correlated with histological markers of plaque instability. Lactosylceramide, ceramide, sphingomyelin, and sphingosine-1-phosphate correlated with caspase-3 activity. In vitro experiments revealed that glucosylceramide, lactosylceramide, and ceramide induced cellular apoptosis. All analyzed sphingolipids induced an inflammatory response in human coronary artery smooth muscle cells. Conclusions— This study shows for the first time that sphingolipids and particularly glucosylceramide are associated with and are possible inducers of plaque inflammation and instability, pointing to sphingolipid metabolic pathways as possible novel therapeutic targets.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Impaired Fibrous Repair A Possible Contributor to Atherosclerotic Plaque Vulnerability in Patients With Type II Diabetes

Andreas Edsfeldt; Isabel Gonçalves; Helena Grufman; Mihaela Nitulescu; Pontus Dunér; Eva Bengtsson; Inês G. Mollet; Ana Persson; Marie Mn Nilsson; Marju Orho-Melander; Olle Melander; Harry Björkbacka; Jan Nilsson

Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II. # Significance {#article-title-31}Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II.


Atherosclerosis | 2015

Circulating cytokines reflect the expression of pro-inflammatory cytokines in atherosclerotic plaques.

Andreas Edsfeldt; Helena Grufman; Giuseppe Asciutto; Mihaela Nitulescu; Ana Persson; Marie Mn Nilsson; Jan Nilsson; Isabel Gonçalves

AIMS Inflammation is a key factor in the development of plaque rupture and acute cardiovascular events. Although imaging techniques can be used to identify vulnerable atherosclerotic plaques, we are lacking non-invasive methods, such as plasma markers of plaque inflammation that could help to identify presence of vulnerable plaques. The aim of the present study was to investigate whether increased plasma levels of pro-inflammatory cytokines reflects inflammatory activity within atherosclerotic plaques. METHODS AND RESULTS Cytokines were measured using Luminex immunoassay in 200 homogenized plaque extracts and plasma, obtained from 197 subjects undergoing carotid surgery. Plasma levels of macrophage inflammatory protein-1β (MIP-1β), tumor necrosis factor- α (TNF-α) and fractalkine correlated significantly, not only with plaque levels of the same cytokines but also with the abundance of several pro-inflammatory and atherogenic cytokines assessed in plaque tissue. High plasma levels (upper tertile) of MIP-1β, TNF-α and fractalkine identified the presence of a plaque with high inflammation (above median of a score based on the plaque content of MIP-1β, TNF-α, interferon-γ (IFN-γ) and fractalkine) with a sensitivity between 65 and 67% and a specificity between 78 and 83%. Furthermore, this study shows that high plasma levels of MIP-1β, TNF-α and fractalkine predict future transient ischemic attacks. CONCLUSIONS Our findings show that the plasma levels of MIP-1β, TNF-α and fractalkine reflect the levels of several pro-atherogenic cytokines in plaque tissue and might be possible plasma markers for a vulnerable atherosclerotic disease. We thereby propose that these cytokines can be used as surrogate markers for the identification of patients with high-risk plaques.


Journal of Internal Medicine | 2014

Plasma levels of high-sensitive C-reactive protein do not correlate with inflammatory activity in carotid atherosclerotic plaques.

Helena Grufman; Isabel Gonçalves; Andreas Edsfeldt; Mihaela Nitulescu; Ana Persson; Marie Mn Nilsson; Jan Nilsson

It is well established that subjects with moderately elevated plasma levels of C‐reactive protein (CRP) have an increased risk of development of cardiovascular events. As atherosclerosis is a disease characterized by chronic arterial inflammation, it is possible that moderate increases in CRP level reflect the presence of plaque inflammation. To investigate this possibility, we compared plasma levels of hsCRP the day before carotid endarterectomy with the degree of inflammation in the excised plaque tissue.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

Impaired Fibrous Repair

Andreas Edsfeldt; Isabel Gonçalves; Helena Grufman; Mihaela Nitulescu; Pontus Dunér; Eva Bengtsson; Inês G. Mollet; Ana Persson; Marie Mn Nilsson; Marju Orho-Melander; Olle Melander; Harry Björkbacka; Jan Nilsson

Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II. # Significance {#article-title-31}Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II.


Stroke | 2015

Human Carotid Plaques With High Levels of Interleukin-16 Are Associated With Reduced Risk for Cardiovascular Events

Caitriona Grönberg; Eva Bengtsson; Gunilla Nordin Fredrikson; Mihaela Nitulescu; Giuseppe Asciutto; Ana Persson; Linda Andersson; Jan Nilsson; Isabel Gonçalves; Harry Björkbacka

Background and Purpose— Interleukin-16 (IL-16) functions as a regulator of T-cell growth and acts as an inducer of cell migration. The aim of this study was to determine whether IL-16 measured in human carotid plaques was associated with symptoms (eg, stroke, transient ischemic attack, or amaurosis fugax), markers of plaque stability, and postoperative cardiovascular events. Methods— Plaques obtained from patients who had ≥1 cerebrovascular ischemic events within 1 month before endarterectomy (n=111) were compared with plaques from patients without symptoms (n=95). Neutral lipids, smooth muscle cell, and macrophage contents were evaluated histologically, and collagen, elastin, and caspase-3 activity were measured biochemically. IL-16, matrix metalloproteinases, and tissue inhibitors of metalloproteinases were measured in plaque homogenates using a multiplex immunoassay. IL-16, CD3, CD4, and FoxP3 mRNA expressions in carotid plaques were analyzed with quantitative real-time polymerase chain reaction. Results— Carotid plaques from asymptomatic patients had higher levels of IL-16 mRNA. High plaque IL-16 protein levels (above median) were associated with reduced incidence of postoperative cardiovascular events during a mean follow-up of 21 months (hazard ratio, 0.47; 95% confidence interval, 0.22–0.99; P=0.047). IL-16 levels correlated with the plaque-stabilizing components: elastin, collagen, matrix metalloproteinase-2, tissue inhibitors of metalloproteinase-1, tissue inhibitors of metalloproteinase-2 and FoxP3 mRNA. Conclusions— This study shows that high levels of IL-16 are associated with asymptomatic carotid plaques, expression of factors contributing to plaque stability, and decreased risk of new cardiovascular events during a 2-year period after surgery, suggesting that IL-16 might have a protective role in human atherosclerotic disease.


Cytokine | 2016

Endarterectomy patients with elevated levels of circulating IL-16 have fewer cardiovascular events during follow-up

Caitriona Grönberg; Giuseppe Asciutto; Ana Persson; Gunilla Nordin Fredrikson; Jan Nilsson; Isabel Gonçalves; Harry Björkbacka

BACKGROUND AND PURPOSE Increased interleukin 16 (IL-16) levels in carotid plaques have been associated with reduced incidence of cardiovascular (CV) events during follow-up in patients who underwent carotid endarterectomy (CEA). In the present study we aimed to determine whether high circulating levels of IL-16 also are associated with a decreased risk of CV events after CEA. METHODS Patients, who had their carotid plaques surgically removed (n=473), were followed for a mean follow-up time of 3.1years. Plasma levels of IL-16 the day before surgery were analyzed by proximity extension assay (PEA) and associated with the occurrence of CV events during follow-up (n=98). RESULTS High levels of circulating IL-16 were independently associated with a decreased risk of CV events when comparing the highest versus the lowest IL-16 tertile (hazard ratio [HR] 0.47; 95% CI 0.27-0.81; P=0.007), as well as with CV deaths (HR 0.25; 95% CI 0.09-0.70; P=0.008). CONCLUSION These present findings indicate an association between IL-16 and less clinical complications of atherosclerosis in a population with known advanced carotid disease.


Stroke | 2011

Low Carotid Calcium Score Is Associated With Higher Levels of Glycosaminoglycans, Tumor Necrosis Factor-Alpha, and Parathyroid Hormone in Human Carotid Plaques

Andreas Edsfeldt; Nuno Dias; Barbara Elmståhl; Markus F. Müller; Katarina Berg; Mihaela Nitulescu; Ana Persson; Olle Ekberg; Isabel Gonçalves

Background and Purpose— Computed tomography (CT) is used to study coronary artery plaques, but little is known about its potential to characterize plaque composition. This study assesses the relation between carotid calcium score (CCS) by CT and plaque composition, namely extracellular matrix, inflammatory mediators, and calcium metabolites. Methods— Thirty patients with significant carotid stenosis underwent preoperative CT. CCS was quantified by Agaston calcium score. Plaque components were studied histologically and biochemically (collagen, elastin, and glycosaminoglycans). Fraktalkine, interferon-&ggr;, interleukin-10, interleukin-12 p70, interleukin-1&bgr;, interleukin-6, monocyte chemoattractant protein-1, platelet-derived growth factor-AB/BB, RANTES and tumor necrosis factor-&agr;, and parathyroid hormone were measured using Luminex technology. Results— Plaques with CCS ≥400 had more calcium (P=0.012), less glycosaminoglycan (P=0.002), tumor necrosis factor-&agr; (P=0.013), and parathyroid hormone (P=0.028) than those with CCS <400. CCS correlated with plaque content of calcium (r=0.62; P<0.001) and inversely with glycosaminoglycan (r=−0.49; P=0.006) and tumor necrosis factor-&agr; (r=−0.56; P=0.001). Conclusions— Human carotid plaques with high CCS are richer in calcium and have lower amounts of glycosaminoglycan, parathyroid hormone, and tumor necrosis factor-&agr;, which is one of the main proinflammatory cytokines involved in atherosclerosis. This suggests that CCS not only reflects the degree of calcification, but also other important biological components relevant for stability such as inflammation.

Collaboration


Dive into the Ana Persson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge