Andreas Edsfeldt
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andreas Edsfeldt.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2012
Isabel Gonçalves; Andreas Edsfeldt; Na Young Ko; Helena Grufman; Katarina Berg; Harry Björkbacka; Mihaela Nitulescu; Ana Persson; Marie Mn Nilsson; Cornelia Prehn; Jerzy Adamski; Jan Nilsson
Objectives—To determine whether the level of lysophosphatidylcholine (lysoPC) generated by lipoprotein-associated phospholipase A2 (Lp-PLA2) is associated with severity of inflammation in human atherosclerotic plaques. Elevated plasma Lp-PLA2 is associated with increased cardiovascular risk. Lp-PLA2 inhibition reduces atherosclerosis. Lp-PLA2 hydrolyzes low-density lipoprotein–oxidized phospholipids generating lysoPCs. According to in vitro studies, lysoPCs are proinflammatory but the association between their generation and plaque inflammation remains unknown. Methods and Results—Inflammatory activity in carotid plaques (162 patients) was determined immunohistochemically and by analyzing cytokines in homogenates (multiplex immunoassay). LysoPCs were quantified using mass spectrometry and Lp-PLA2 and the lysoPC metabolite lysophosphatidic acid (LPA) by ELISA. There was a strong correlation among lysoPC 16:0, 18:0, 18:1, LPA, and Lp-PLA2 in plaques. LysoPC 16:0, 18:0, 18:1, LPA, and Lp-PLA2 correlated with interleukin-1&bgr;, interleukin-6, monocyte chemoattractant protein-1, macrophage inflammatory protein-1&bgr;, regulated on activation normal T-cell expressed and secreted, and tumor necrosis factor-&agr; in plaques. High lysoPC and Lp-PLA2 correlated with increased plaque macrophages and lipids and with low content of smooth muscle cells, whereas LPA only correlated with plaque macrophages. Lp-PLA2, lysoPC 16:0, 18:0, and 18:1, but not LPA were higher in symptomatic than in asymptomatic plaques. Conclusions—The associations among Lp-PLA2, lysoPCs, LPA, and proinflammatory cytokines in human plaques suggest that lysoPCs play a key role in plaque inflammation and vulnerability. Our findings support Lp-PLA2 inhibition as a possible strategy for the prevention of cardiovascular disease.
Stroke | 2012
Andreas Edsfeldt; Mihaela Nitulescu; Helena Grufman; Caitriona Grönberg; Ana Persson; Marie Mn Nilsson; Margaretha Persson; Harry Björkbacka; Isabel Gonçalves
Background and Purpose— Recently, plasma soluble urokinase plasminogen activator receptor (suPAR) has gained interest as a marker of cardiovascular risk. suPAR is released through the cleavage of urokinase plasminogen activator receptor (uPAR), which is found in monocytes, activated T-lymphocytes and endothelial cells, all involved in atherosclerosis. suPAR levels have been well studied in plasma, but no studies have focused on suPAR in human atherosclerotic plaques. The aim of this study was to determine whether suPAR measured in the plaque is associated with symptomatic plaques and plaque inflammation. Methods— Plasma and carotid plaques from 162 patients were analyzed. Lipids, collagen, uPAR, and macrophages were measured histologically. Cytokines and suPAR were measured in homogenized plaque extracts using multiplex immunoassay and ELISA, respectively. Plasma levels of suPAR were analysed with ELISA. CD3, CD4, as well as uPAR mRNA expression were assessed with quantitative real-time polymerase chain reaction in plaque homogenates from 123 patients. Results— Plaque and plasma suPAR levels were higher in symptomatic patients compared with asymptomatic patients. Plaque suPAR levels correlated with plaque content of lipids and macrophages and with proinflammatory chemokines and cytokines monocyte chemoattractant protein 1, tumor necrosis factor &agr;, interleukin 1&bgr;, interleukin 6, platelet-derived growth factor AB/BB, monocyte inflammatory protein 1&bgr;, regulated on activation normal T-cell expressed and secreted, and s-CD40L. uPAR mRNA and histological staining for uPAR correlated with plaque content of suPAR. Conclusion— This study shows that suPAR in human carotid plaques and plasma is associated with the presence of symptoms and that plaque suPAR is associated with the vulnerable inflammatory plaque. These findings strengthen the hypothesis of suPAR as a future marker of vulnerable atherosclerotic plaques.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2015
Isabel Gonçalves; Eva Bengtsson; Helen M. Colhoun; Angela C. Shore; Carlo Palombo; Andrea Natali; Andreas Edsfeldt; Pontus Dunér; Gunilla Nordin Fredrikson; Harry Björkbacka; Gerd Östling; Kunihiko Aizawa; Francesco Casanova; Margaretha Persson; Km Gooding; David Strain; Faisel Khan; Helen C. Looker; Fiona Adams; J. J. F. Belch; Silvia Pinnoli; Elena Venturi; Michaela Kozakova; Li Ming Gan; Volker Schnecke; Jan Nilsson
Objective— Matrix metalloproteinases (MMPs) degrade extracellular matrix proteins and play important roles in development and tissue repair. They have also been shown to have both protective and pathogenic effects in atherosclerosis, and experimental studies have suggested that MMP-12 contributes to plaque growth and destabilization. The objective of this study was to investigate the associations between circulating MMPs, atherosclerosis burden, and incidence of cardiovascular disease with a particular focus on type 2 diabetes mellitus. Approach and Results— Plasma levels of MMP-1, -3, -7, -10, and -12 were analyzed by the Proximity Extension Assay technology in 1500 subjects participating in the SUMMIT (surrogate markers for micro- and macrovascular hard end points for innovative diabetes tools) study, 384 incident coronary cases, and 409 matched controls in the Malmö Diet and Cancer study and in 205 carotid endarterectomy patients. Plasma MMP-7 and -12 were higher in subjects with type 2 diabetes mellitus, increased with age and impaired renal function, and was independently associated with prevalent cardiovascular disease, atherosclerotic burden (as assessed by carotid intima-media thickness and ankle-brachial pressure index), arterial stiffness, and plaque inflammation. Baseline MMP-7 and -12 levels were increased in Malmö Diet and Cancer subjects who had a coronary event during follow-up. Conclusions— The plasma level of MMP-7 and -12 are elevated in type 2 diabetes mellitus, associated with more severe atherosclerosis and an increased incidence of coronary events. These observations provide clinical support to previous experimental studies, demonstrating a role for these MMPs in plaque development, and suggest that they are potential biomarkers of atherosclerosis burden and cardiovascular disease risk.
BMC Cardiovascular Disorders | 2016
Isabel Gonçalves; Andreas Edsfeldt; Helen M. Colhoun; Angela C. Shore; Carlo Palombo; Andrea Natali; Gunilla Nordin Fredrikson; Harry Björkbacka; Maria Wigren; Eva Bengtsson; Gerd Östling; Kunihiko Aizawa; Francesco Casanova; Margaretha Persson; Km Gooding; Phil Gates; Faisel Khan; Helen C. Looker; Fiona Adams; J. J. F. Belch; Silvia Pinnola; Elena Venturi; Michaela Kozakova; Li Ming Gan; Volker Schnecke; Jan Nilsson
BackgroundActivation of the renin-angiotensin-aldosterone-system (RAAS) has been proposed to contribute to development of vascular complications in type 2 diabetes (T2D). The aim of the present study was to determine if plasma renin levels are associated with the severity of vascular changes in subjects with and without T2D.MethodsRenin was analyzed by the Proximity Extension Assay in subjects with (n = 985) and without (n = 515) T2D participating in the SUMMIT (SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes Tools) study and in 205 carotid endarterectomy patients. Vascular changes were assessed by determining ankle-brachial pressure index (ABPI), carotid intima-media thickness (IMT), carotid plaque area, pulse wave velocity (PWV) and the reactivity hyperemia index (RHI).ResultsPlasma renin was elevated in subjects with T2D and demonstrated risk factor-independent association with prevalent cardiovascular disease both in subjects with and without T2D. Renin levels increased with age, body mass index, HbA1c and correlated inversely with HDL. Subjects with T2D had more severe carotid disease, increased arterial stiffness, and impaired endothelial function. Risk factor-independent associations between renin and APBI, bulb IMT, carotid plaque area were observed in both T2D and non-T2D subjects. These associations were independent of treatment with RAAS inhibitors. Only weak associations existed between plasma renin and the expression of pro-inflammatory and fibrous components in plaques from 205 endarterectomy patients.ConclusionsOur findings provide clinical evidence for associations between systemic RAAS activation and atherosclerotic burden and suggest that this association is of particular importance in T2D.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2016
Andreas Edsfeldt; Pontus Dunér; Marcus Ståhlman; Inês G. Mollet; Giuseppe Asciutto; Helena Grufman; Mihaela Nitulescu; Ana Persson; Rachel M. Fisher; Olle Melander; Marju Orho-Melander; Jan Borén; Jan Nilsson; Isabel Gonçalves
Objective— Lipids are central to the development of atherosclerotic plaques. Specifically, which lipids are culprits remains controversial, and promising targets have failed in clinical studies. Sphingolipids are bioactive lipids present in atherosclerotic plaques, and they have been suggested to have both proatherogenic and antiatherogenic. However, the biological effects of these lipids remain unknown in the human atherosclerotic plaque. The aim of this study was to assess plaque levels of sphingolipids and investigate their potential association with and contribution to plaque vulnerability. Approach and Results— Glucosylceramide, lactosylceramide, ceramide, dihydroceramide, sphingomyelin, and sphingosine-1-phosphate were analyzed in homogenates from 200 human carotid plaques using mass spectrometry. Inflammatory activity was determined by analyzing plaque levels of cytokines and plaque histology. Caspase-3 was analyzed by ELISA technique. Expression of regulatory enzymes was analyzed with RNA sequencing. Human coronary artery smooth muscle cells were used to analyze the potential role of the 6 sphingolipids as inducers of plaque inflammation and cellular apoptosis in vitro. All sphingolipids were increased in plaques associated with symptoms and correlated with inflammatory cytokines. All sphingolipids, except sphingosine-1-phosphate, also correlated with histological markers of plaque instability. Lactosylceramide, ceramide, sphingomyelin, and sphingosine-1-phosphate correlated with caspase-3 activity. In vitro experiments revealed that glucosylceramide, lactosylceramide, and ceramide induced cellular apoptosis. All analyzed sphingolipids induced an inflammatory response in human coronary artery smooth muscle cells. Conclusions— This study shows for the first time that sphingolipids and particularly glucosylceramide are associated with and are possible inducers of plaque inflammation and instability, pointing to sphingolipid metabolic pathways as possible novel therapeutic targets.Objective— Lipids are central to the development of atherosclerotic plaques. Specifically, which lipids are culprits remains controversial, and promising targets have failed in clinical studies. Sphingolipids are bioactive lipids present in atherosclerotic plaques, and they have been suggested to have both proatherogenic and antiatherogenic. However, the biological effects of these lipids remain unknown in the human atherosclerotic plaque. The aim of this study was to assess plaque levels of sphingolipids and investigate their potential association with and contribution to plaque vulnerability. Approach and Results— Glucosylceramide, lactosylceramide, ceramide, dihydroceramide, sphingomyelin, and sphingosine-1-phosphate were analyzed in homogenates from 200 human carotid plaques using mass spectrometry. Inflammatory activity was determined by analyzing plaque levels of cytokines and plaque histology. Caspase-3 was analyzed by ELISA technique. Expression of regulatory enzymes was analyzed with RNA sequencing. Human coronary artery smooth muscle cells were used to analyze the potential role of the 6 sphingolipids as inducers of plaque inflammation and cellular apoptosis in vitro. All sphingolipids were increased in plaques associated with symptoms and correlated with inflammatory cytokines. All sphingolipids, except sphingosine-1-phosphate, also correlated with histological markers of plaque instability. Lactosylceramide, ceramide, sphingomyelin, and sphingosine-1-phosphate correlated with caspase-3 activity. In vitro experiments revealed that glucosylceramide, lactosylceramide, and ceramide induced cellular apoptosis. All analyzed sphingolipids induced an inflammatory response in human coronary artery smooth muscle cells. Conclusions— This study shows for the first time that sphingolipids and particularly glucosylceramide are associated with and are possible inducers of plaque inflammation and instability, pointing to sphingolipid metabolic pathways as possible novel therapeutic targets.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Andreas Edsfeldt; Isabel Gonçalves; Helena Grufman; Mihaela Nitulescu; Pontus Dunér; Eva Bengtsson; Inês G. Mollet; Ana Persson; Marie Mn Nilsson; Marju Orho-Melander; Olle Melander; Harry Björkbacka; Jan Nilsson
Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II. # Significance {#article-title-31}Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II.
Cerebrovascular Diseases | 2016
Andreas Edsfeldt; Eva Bengtsson; Giuseppe Asciutto; Pontus Dunér; Harry Björkbacka; Gunilla Nordin Fredrikson; Jan Nilsson; Isabel Gonçalves
Background: Galectin-3 (Gal-3) has been suggested to have both pro- and anti-atherogenic properties. High plasma Gal-3 levels are associated with increased risk for cardiovascular (CV) death. However, it has so far not been investigated if plasma Gal-3 levels can predict the risk for future stroke in patients suffering from carotid atherosclerosis. The aim of this study was to investigate whether Gal-3 could be used as a marker to predict postoperative cerebrovascular ischemic events among patients who underwent carotid endarterectomy (CEA). Methods: Plasma samples were obtained from 558 CEA patients and Gal-3 levels were analyzed by the proximity extension assay technique. The Swedish national in-patient health register was used to identify postoperative cerebrovascular events during the follow-up period (42.6 ± 26.2 months). Results: Plasma Gal-3 was increased in patients treated for a symptomatic carotid stenosis (p = 0.013). Patients with Gal-3 levels above the median value had an increased incidence of stroke as shown by Kaplan-Meier curves of event-free survival (p = 0.007). Gal-3 was a predictor of postoperative stroke among women (hazard ratio 15.1, 95% CI 1.3-172.2; p = 0.028) even after correction for traditional CV risk factors. Conclusions: This study is the first to show that increased plasma levels of Gal-3 can help in predicting the occurrence of postoperative strokes among female subjects who undergo CEA, independently of traditional risk factors for cerebrovascular disease. This finding suggests that Gal-3 could be used as a marker to identify patients in need of intensified postoperative medical care.
Atherosclerosis | 2015
Andreas Edsfeldt; Helena Grufman; Giuseppe Asciutto; Mihaela Nitulescu; Ana Persson; Marie Mn Nilsson; Jan Nilsson; Isabel Gonçalves
AIMS Inflammation is a key factor in the development of plaque rupture and acute cardiovascular events. Although imaging techniques can be used to identify vulnerable atherosclerotic plaques, we are lacking non-invasive methods, such as plasma markers of plaque inflammation that could help to identify presence of vulnerable plaques. The aim of the present study was to investigate whether increased plasma levels of pro-inflammatory cytokines reflects inflammatory activity within atherosclerotic plaques. METHODS AND RESULTS Cytokines were measured using Luminex immunoassay in 200 homogenized plaque extracts and plasma, obtained from 197 subjects undergoing carotid surgery. Plasma levels of macrophage inflammatory protein-1β (MIP-1β), tumor necrosis factor- α (TNF-α) and fractalkine correlated significantly, not only with plaque levels of the same cytokines but also with the abundance of several pro-inflammatory and atherogenic cytokines assessed in plaque tissue. High plasma levels (upper tertile) of MIP-1β, TNF-α and fractalkine identified the presence of a plaque with high inflammation (above median of a score based on the plaque content of MIP-1β, TNF-α, interferon-γ (IFN-γ) and fractalkine) with a sensitivity between 65 and 67% and a specificity between 78 and 83%. Furthermore, this study shows that high plasma levels of MIP-1β, TNF-α and fractalkine predict future transient ischemic attacks. CONCLUSIONS Our findings show that the plasma levels of MIP-1β, TNF-α and fractalkine reflect the levels of several pro-atherogenic cytokines in plaque tissue and might be possible plasma markers for a vulnerable atherosclerotic disease. We thereby propose that these cytokines can be used as surrogate markers for the identification of patients with high-risk plaques.
Journal of Internal Medicine | 2014
Helena Grufman; Isabel Gonçalves; Andreas Edsfeldt; Mihaela Nitulescu; Ana Persson; Marie Mn Nilsson; Jan Nilsson
It is well established that subjects with moderately elevated plasma levels of C‐reactive protein (CRP) have an increased risk of development of cardiovascular events. As atherosclerosis is a disease characterized by chronic arterial inflammation, it is possible that moderate increases in CRP level reflect the presence of plaque inflammation. To investigate this possibility, we compared plasma levels of hsCRP the day before carotid endarterectomy with the degree of inflammation in the excised plaque tissue.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Andreas Edsfeldt; Isabel Gonçalves; Helena Grufman; Mihaela Nitulescu; Pontus Dunér; Eva Bengtsson; Inês G. Mollet; Ana Persson; Marie Mn Nilsson; Marju Orho-Melander; Olle Melander; Harry Björkbacka; Jan Nilsson
Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II. # Significance {#article-title-31}Objective— Diabetes mellitus (DM) type II is increasing rapidly worldwide. Patients with DM II have a greater atherosclerotic burden and higher risk of developing cardiovascular complications. Inflammation has been proposed as the main cause for the high risk of atherosclerotic disease in DM II. In this study, we compared markers of inflammation and fibrous repair in plaques from subjects with and without DM II. Approach and Results— Carotid endarterectomy specimens were obtained from 63 patients with and 131 without DM. Plaque structure, connective tissue proteins, inflammatory cells, and markers were analyzed by immunohistochemistry, ELISA, Mesoscale, and Luminex technology. Carotid plaques from diabetics had lower levels of extracellular matrix proteins, elastin, and collagen, which are critical for plaque stability. Plaques from diabetics had reduced levels of platelet-derived growth factor and matrix metalloproteinase-2, both important for tissue repair. No differences were observed in inflammatory markers in plaques from diabetic and nondiabetic patients. Conclusion— This study suggests that atherosclerotic plaques in subjects with DM II are more prone to rupture because of impaired repair responses rather than to increased vascular inflammation. Although this study did not have a mechanistic design, our findings suggest that targeting impaired repair responses in carotid plaques may help to increase our understanding of atherosclerotic plaque development and vulnerability in patients with DM II.