Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Analía I. Etcheverría is active.

Publication


Featured researches published by Analía I. Etcheverría.


European Journal of Epidemiology | 2000

Virulence genotypes and serotypes of verotoxigenic Escherichia coli isolated from cattle and foods in Argentina

Alberto E. Parma; Marcelo E. Sanz; Jesús E. Blanco; Jorge Blanco; M.R. Viñas; Miguel Blanco; Nora Lía Padola; Analía I. Etcheverría

Virulence factors of Verotoxin-producing Escherichia coli(VTEC) strains isolated from hamburgers and ground beef were studied in Argentina by PCR. Their virulence profiles were correlated with those corresponding to strains isolated from calves and adult cattle. Most virulent profiles (VTs+eae+Mp+) were present in E. colifrom healthy and diarrheic calves corresponding to O5:H-, O5:H27, O20:H?, O26:H11, O38:H?, O103:H-, O103:H2, O111:H-, O118:H16, O165:H-serotypes. The presence of the eaegene was significantly more frequent among VTEC strains isolated from calves (20/26; 76%) than from adult cattle (1/39; 2.5%) (p< 0.005). VT2+eae−E. coliwas prevalent in foods and adult cattle at slaughterhouse. The prevalence of the eaegene was similar between VTEC strains isolated from meat (0/21) and adult cattle (1/39; 2.5%) which constitutes the main population processed at slaughterhouses in Argentina. Serotyping showed that VTEC strains were distributed among 31 serotypes, some of which (O20:H19, O91:H21, O113:H21, O116:H21, O117:H7, O171:H2, OX3:H21) were shared between bovine and food strains. These O serogroups have been isolated from cases of haemorrhagic colitis (HC) and haemolytic-uraemic syndrome (HUS) in humans in several continental European countries. This study confirms the role of cattle as a reservoir of many VTEC serotypes other than O157:H7 and represents a base for future diagnostic, prevention and control strategies of EHEC in this country. In addition, this study affirms the advantages of PCR-based screening of E. coliisolates given the finding of so many verotoxin-producing strains.


Veterinary Microbiology | 2004

Serotypes and virulence genes of bovine Shigatoxigenic Escherichia coli (STEC) isolated from a feedlot in Argentina

Nora Lía Padola; Marcelo E. Sanz; Jesús E. Blanco; Miguel Blanco; Jorge Blanco; Analía I. Etcheverría; Guillermo H. Arroyo; M. A. Usera; Alberto E. Parma

Grazing-fed cattle were previously demonstrated to be reservoir of non-O157 Shigatoxigenic Escherichia coli (STEC) serotypes in Argentina. The acid-resistance of some STEC strains makes it reasonable to assume the presence in feedlot of particular STEC serotypes. Fifty-nine animals were sampled every 2 weeks during 6 months by rectal swabs. Twenty-seven of 59 animals (45.8%) were shown to be Stx2(+); 3/59 (5.1%) carried Stx1(+) and 7/59 (11.9%) were Stx1(+) Stx2(+). Among 44 STEC isolates, 31 isolates were associated to 10 O serogroups (O2, O15, O25, O103, O145, O146, O157, O171, O174, O175) and 13 were considered non-typable (NT). Six H antigens (H2, H7, H8, H19, H21, H25) were distributed in 21 isolates whereas 23 were non-mobile (H-). Seventeen of 44 strains (38.6%) were eaeA(+) and 14 (31.8%) harbored the 60MDa plasmid. The megaplasmid (Mp) and eaeA gene were simultaneously found in a limited number of serotypes belonging to the enterohaemorrhagic E. coli (EHEC). E. coli O157:H7 strains, isolated from four (6.8%) animals, corresponded to the Stx2(+), eaeA(+), Mp(+) pattern. Three O157:H7 strains belonged to phage type 4 and the other strain was atypical. Many serotypes isolated from grain-fed cattle (O2:H25, O15:H21, O25:H19, O145:H-, O146:H-, O146:H21, O157:H7, O175:H8) also differed from those isolated by us previously from grazing animals. The serotypes O15:H21, O25:H19 and O175:H8 had not been identified at present as belonging to STEC. This work provides new data for the understanding of the ecology of STEC in grain-fed cattle and confirms that cattle are an important reservoir of STEC.


Virulence | 2013

Shiga toxin-producing Escherichia coli: Factors involved in virulence and cattle colonization

Analía I. Etcheverría; Nora Lía Padola

Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shiga toxins 1 and 2. Additional virulence markers are a plasmid-encoded enterohemolysin (ehxA), an autoagglutinating adhesin (Saa), a catalase-peroxidase (katP), an extracellular serine protease (espP), a zinc metalloprotease (stcE), a subtilase cytotoxin (subAB), among others. Other virulence factors are intimin and adhesins that had a roll in the adherence of STEC to bovine colon. This review focuses on the virulence traits of STEC and especially on those related to the adhesion to bovine colon. The known of the interaction between STEC and the bovine host is crucial to develop strategies to control cattle colonization.


Revista Da Sociedade Brasileira De Medicina Tropical | 2004

Recommendations for the detection of Leptospira in urine by PCR.

Paula M. A. Lucchesi; Guillermo H. Arroyo; Analía I. Etcheverría; Alberto E. Parma; Alfredo Seijo

In the present study PCR was applied to detect leptospires in human urine. Several approaches for sample processing were evaluated to optimize the detection of leptospires in urine mixed with this bacterium. Furthermore, some changes in the composition of the reaction mix were studied. No amplification was observed in acidic urine, therefore neutralization of the sample immediately after collection is strongly recommended. PBS gave better results than Tris or NaOH as neutralizing reagents. Freezing and thawing of samples before processing yielded negative results. Elimination of epithelial cells, leukocytes and crystals by centrifugation at 3,000 rpm at room temperature increased sensitivity. In addition, both the washing step after collecting leptospires by centrifugation and the inclusion of 0.1% bovine serum albumin in the reaction mix minimized the interference of other inhibitory compounds. These modifications were useful to improve the detection of Leptospira in urine by PCR.


Frontiers in Cellular and Infection Microbiology | 2013

Shiga toxin-producing Escherichia coli in beef retail markets from Argentina

Victoria Brusa; Virginia Aliverti; Florencia Aliverti; Emanuel Ortega; Julián de la Torre; Luciano Linares; Marcelo E. Sanz; Analía I. Etcheverría; Nora Lía Padola; Lucia Galli; Pilar Peral García; Julio Copes; Gerardo A. Leotta

Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens that cause mild or serious diseases and can lead to people death. This study reports the prevalence and characteristics of STEC O157 and non-O157 in commercial ground beef and environmental samples, including meat table, knife, meat mincing machine, and manipulator hands (n = 450) obtained from 90 retail markets over a nine-month period. The STEC isolates were serotyped and virulence genes as stx (Shiga toxin), rfbO157] (O157 lipopolysaccharide), fliCH7 (H7 flagellin), eae (intimin), ehxA (enterohemolysin) and saa (STEC autoagglutinating adhesin), were determined. STEC O157 were identified in 23 (25.5%) beef samples and 16 (4.4%) environmental samples, while STEC non-O157 were present in 47 (52.2%) and 182 (50.5%), respectively. Among 54 strains isolated, 17 were STEC O157:H7 and 37 were STEC non-O157. The prevalent genotype for O157 was stx2/eae/ehxA/fliCH7 (83.4%), and for STEC non-O157 the most frequent ones were stx1/stx2/saa/ehxA (29.7%); stx2 (29.7%); and stx2/saa/ehxA (27%). None of the STEC non-O157 strains were eae-positive. Besides O157:H7, other 20 different serotypes were identified, being O8:H19, O178:H19, and O174:H28 the prevalent. Strains belonging to the same serotype could be isolated from different sources of the same retail market. Also, the same serotype could be detected in different stores. In conclusion, screening techniques are increasingly sensitive, but the isolation of STEC non-O157 is still a challenge. Moreover, with the results obtained from the present work, although more studies are needed, cross-contamination between meat and the environment could be suspected.


BMC Microbiology | 2002

First isolation of the enterohaemorrhagic Escherichia coli O145:H- from cattle in feedlot in Argentina

Nora Lía Padola; Marcelo E. Sanz; Paula Ma Lucchesi; Jesús E. Blanco; Jorge Blanco; Miguel Blanco; Analía I. Etcheverría; Guillermo H. Arroyo; Alberto E. Parma

BackgroundEnterohaemorrhagic Escherichia coli (EHEC) is considered to be common cause of haemorrhagic colitis (HC), thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome (HUS) in humans. In a previous paper, we have demonstrated that EHEC are commonly found in the intestines of livestock. Infections in humans are, in part, a consequence of consumption of undercooked meat or raw milk. Argentina has one of the highest records of HUS (300–400 cases/year; 22/100,000 children under 4 years of age). The aim of this work is to communicate the first isolation of O145:H-from cattle in this country and characterize the virulence cassette, providing useful information to evaluate the risk of foodborne transmission of this emergent non-O157:H7 serotype.ResultsEHEC O145:H- was isolated from cattle in an Argentinian feedlot. Pheno- and genotype of nine strains were characterized, corresponding to several virulence cassettes: VT2+eaeA+ Mp+ (n = 5), VT2+eaeA+ (n = 1), VT1+eaeA+ Mp+ (n = 2), and VT1+eaeA+ (n = 1). Strains isolated from the same animal were considered only when they showed a different virulence pattern. The clonal relationship was studied by RAPD. Strains were distributed in two RAPD profiles, which corresponded to the presence of either, VT1+ or VT2+ genotype. No difference was detected by RAPD analysis between Mp+ or Mp- strains.ConclusionsThis was the first isolation of EHEC O145:H- serotype in Argentina enlarging the list of non-O157:H7 serotypes isolated from cattle in this country by us. All O145:H-strains carried several virulence factors which allow us to predict their potential ability to develop haemolytic uraemic syndrome in humans.


The Scientific World Journal | 2013

Relevance of Biofilms in the Pathogenesis of Shiga-Toxin-Producing Escherichia coli Infection

Natalia Angel Villegas; José L. Baronetti; Inés Albesa; Rosana Polifroni; Alberto E. Parma; Analía I. Etcheverría; María Cecilia Becerra; Nora Lía Padola

The present study was designed to determine the relationships among biofilm formation, cellular stress and release of Shiga toxin (Stx) by three different clinical Shiga toxin-producing Escherichia coli (STEC) strains. The biofilm formation was determined using crystal violet stain in tryptic soy broth or thioglycollate medium with the addition of sugars (glucose or mannose) or hydrogen peroxide. The reactive oxygen species (ROSs) were detected by the reduction of nitro blue tetrazolium and reactive nitrogen intermediates (RNI) determined by the Griess assay. In addition, the activities of two antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), were studied. For the cytotoxicity studies, Vero cells were cultured with Stx released of STEC biofilms. The addition of sugars in both culture mediums resulted in an increase in biofilm biomass, with a decrease in ROS and RNI production, low levels of SOD and CAT activity, and minimal cytotoxic effects. However, under stressful conditions, an important increase in the antioxidant enzyme activity and high level of Stx production were observed. The disturbance in the prooxidant-antioxidant balance and its effect on the production and release of Stx evaluated under different conditions of biofilm formation may contribute to a better understanding of the relevance of biofilms in the pathogenesis of STEC infection.


Frontiers in Microbiology | 2016

From Farm to Table: Follow-Up of Shiga Toxin-Producing Escherichia coli Throughout the Pork Production Chain in Argentina

Rocío Colello; María E. Cáceres; María J. Ruiz; Marcelo E. Sanz; Analía I. Etcheverría; Nora Lía Padola

Pigs are important reservoirs of Shiga toxin-producing Escherichia coli (STEC). The entrance of these strains into the food chain implies a risk to consumers because of the severity of hemolytic uremic syndrome. This study reports the prevalence and characterization of STEC throughout the pork production chain. From 764 samples, 31 (4.05%) were stx positive by PCR screening. At farms, 2.86% of samples were stx positive; at slaughter, 4.08% of carcasses were stx positive and at boning rooms, 6% of samples were stx positive. These percentages decreased in pork meat ready for sale at sales markets (4.59%). From positive samples, 50 isolates could be characterized. At farms 37.5% of the isolates carried stx1/stx2 genes, 37.5% possessed stx2e and 25%, carried only stx2. At slaughter we detected 50% of isolates positive for stx2, 33% for stx2e, and 16% for stx1/stx2. At boning rooms 59% of the isolates carried stx1/stx2, 14% stx2e, and 5% stx1/stx2/stx2e. At retail markets 66% of isolates were positive for stx2, 17% stx2e, and 17% stx1/stx2. For the other virulence factors, ehxA and saa were not detected and eae gene was detected in 12% of the isolates. Concerning putative adhesins, agn43 was detected in 72%, ehaA in 26%, aida in 8%, and iha in 6% of isolates. The strains were typed into 14 E. coli O groups (O1, O2, O8, O15, O20, O35, O69, O78, O91, O121, O138, O142, O157, O180) and 10 H groups (H9, H10, H16, H21, H26, H29, H30, H32, H45, H46). This study reports the prevalence and characterization of STEC strains through the chain pork suggesting the vertical transmission. STEC contamination originates in the farms and is transferred from pigs to carcasses in the slaughter process and increase in meat pork at boning rooms and sales markets. These results highlight the need to implement an integrated STEC control system based on good management practices on the farm and critical control point systems in the food chain.


Toxicology in Vitro | 2015

Effect of antibiotics on cellular stress generated in Shiga toxin-producing Escherichia coli O157:H7 and non-O157 biofilms.

Natalia Angel Villegas; José L. Baronetti; Inés Albesa; Analía I. Etcheverría; M. Cecilia Becerra; Nora Lía Padola; M Gabriela Paraje

Shiga toxin-producing Escherichia coli (STEC) are important food-borne pathogens, with the main virulence factor of this bacterium being its capacity to secrete Shiga toxins (Stxs). Therefore, the use of certain antibiotics for the treatment of this infection, which induces the liberation of Stxs, is controversial. Reactive oxygen and nitrogen species are also involved in the pathogenesis of different diseases. The purpose of this study was to analyze the effects of antibiotics on biofilms of STEC and the relationships between cellular stress and the release of Stx. To this end, biofilms of reference and clinical strains were treated with antibiotics (ciprofloxacin, fosfomycin and rifaximin) and the production of oxidants, the antioxidant defense system and toxin release were evaluated. Ciprofloxacin altered the prooxidant-antioxidant balance, with a decrease of oxidant metabolites and an increase of superoxide dismutase and catalase activity, being associated with high-levels of Stx production. Furthermore, inhibition of oxidative stress by exogenous antioxidants was correlated with a reduction in the liberation of Stx, indicating the participation of this phenomenon in the release of this toxin. In contrast, fosfomycin and rifaximin produced less alteration with a minimal production of Stx. Our data show that treatment of biofilm-STEC with these antibiotics induces oxidative stress-mediated release of Stx.


Frontiers in Cellular and Infection Microbiology | 2015

Genetic characterization of Shiga toxin-producing Escherichia coli O26:H11 strains isolated from animal, food, and clinical samples

Alejandra Krüger; Paula M. A. Lucchesi; A. Mariel Sanso; Analía I. Etcheverría; Ana V. Bustamante; Julia Burgán; Luciana Fernández; Daniel Fernández; Gerardo A. Leotta; Alexander W. Friedrich; Nora Lía Padola; John W. A. Rossen

The Shiga-toxin producing Escherichia coli (STEC) may cause serious illness in human. Here we analyze O26:H11 strains known to be among the most reported STEC strains causing human infections. Genetic characterization of strains isolated from animal, food, and clinical specimens in Argentina showed that most carried either stx1a or stx2a subtypes. Interestingly, stx2a-positive O26:H11 rarely isolated from cattle in other countries showed to be an important proportion of O26:H11 strains circulating in cattle and food in our region. Seventeen percent of the isolates harbored more than one gene associated with antimicrobial resistance. In addition to stx, all strains contained the virulence genes eae-β, tir, efa, iha, espB, cif, espA, espF, espJ, nleA, nleB, nleC, and iss; and all except one contained ehxA, espP, and cba genes. On the other hand, toxB and espI genes were exclusively observed in stx2-positive isolates, whereas katP was only found in stx1a-positive isolates. Our results show that O26:H11 STEC strains circulating in Argentina, including those isolated from humans, cattle, and meat products, present a high pathogenic potential, and evidence that cattle can be a reservoir of O26:H11 strains harboring stx2a.

Collaboration


Dive into the Analía I. Etcheverría's collaboration.

Top Co-Authors

Avatar

Nora Lía Padola

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Marcelo E. Sanz

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Paula M. A. Lucchesi

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Rocío Colello

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Guillermo H. Arroyo

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Alejandra Krüger

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Daniel Fernández

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Rosana Polifroni

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Jesús E. Blanco

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Jorge Blanco

University of Santiago de Compostela

View shared research outputs
Researchain Logo
Decentralizing Knowledge