Rocío Colello
National Scientific and Technical Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rocío Colello.
Frontiers in Microbiology | 2016
Rocío Colello; María E. Cáceres; María J. Ruiz; Marcelo E. Sanz; Analía I. Etcheverría; Nora Lía Padola
Pigs are important reservoirs of Shiga toxin-producing Escherichia coli (STEC). The entrance of these strains into the food chain implies a risk to consumers because of the severity of hemolytic uremic syndrome. This study reports the prevalence and characterization of STEC throughout the pork production chain. From 764 samples, 31 (4.05%) were stx positive by PCR screening. At farms, 2.86% of samples were stx positive; at slaughter, 4.08% of carcasses were stx positive and at boning rooms, 6% of samples were stx positive. These percentages decreased in pork meat ready for sale at sales markets (4.59%). From positive samples, 50 isolates could be characterized. At farms 37.5% of the isolates carried stx1/stx2 genes, 37.5% possessed stx2e and 25%, carried only stx2. At slaughter we detected 50% of isolates positive for stx2, 33% for stx2e, and 16% for stx1/stx2. At boning rooms 59% of the isolates carried stx1/stx2, 14% stx2e, and 5% stx1/stx2/stx2e. At retail markets 66% of isolates were positive for stx2, 17% stx2e, and 17% stx1/stx2. For the other virulence factors, ehxA and saa were not detected and eae gene was detected in 12% of the isolates. Concerning putative adhesins, agn43 was detected in 72%, ehaA in 26%, aida in 8%, and iha in 6% of isolates. The strains were typed into 14 E. coli O groups (O1, O2, O8, O15, O20, O35, O69, O78, O91, O121, O138, O142, O157, O180) and 10 H groups (H9, H10, H16, H21, H26, H29, H30, H32, H45, H46). This study reports the prevalence and characterization of STEC strains through the chain pork suggesting the vertical transmission. STEC contamination originates in the farms and is transferred from pigs to carcasses in the slaughter process and increase in meat pork at boning rooms and sales markets. These results highlight the need to implement an integrated STEC control system based on good management practices on the farm and critical control point systems in the food chain.
Brazilian Journal of Microbiology | 2015
Rocío Colello; Analía I. Etcheverría; José Di Conza; Gabriel Gutkind; Nora Lía Padola
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2 . Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1 / intl2 , highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria.
International Journal of Microbiology | 2014
Eulalia de la Torre; Rocío Colello; Nora Lía Padola; Analía I. Etcheverría; Edgardo Rodríguez; F. Amanto; M. O. Tapia; Alejandro Luis Soraci
Integrons are one of the genetic elements involved in the acquisition of antibiotic resistance. The aim of the present research is to investigate the presence of integrons in commensal Escherichia coli (E. coli) strains, isolated from pigs at different stages of production system and from the environment in an Argentinian farm. Five sows postpartum and five randomly chosen piglets from each litter were sampled by rectal swabs. They were sampled again at day 21 and at day 70. Environmental samples from the farm were also obtained. E. coli containing any integron class or combination of both integrons was detected by polymerase chain reaction in 100% of sows and in piglets at different stages of production: farrowing pen stage 68.1%;, weaning 60%, and growing/finishing 85.8%, showing an increase along the production system. From environmental samples 78.4% of E. coli containing any integron class was detected. We conclude that animals and farm environment can act as reservoirs for potential spread of resistant bacteria by means of mobile genetic elements as integrons, which has a major impact on production of food animals and that can reach man through the food chain, constituting a problem for public health.
Journal of General and Applied Microbiology | 2015
Eulalia de la Torre; Rocío Colello; Daniel Fernández; Analía I. Etcheverría; José Di Conza; Gabriel Gutkind; M. O. Tapia; Susana Nelly Diéguez; Alejandro Luis Soraci; Nora Lía Padola
Fil: de la Torre, Eulalia. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Tandil. Centro de Investigacion Veterinaria de Tandil. Universidad Nacional del Centro de la Provincia de Buenos Aires. Centro de Investigacion Veterinaria de Tandil. Provincia de Buenos Aires. Gobernacion. Comision de Investigaciones Cientificas. Centro de Investigacion Veterinaria de Tandil; Argentina
Microbial Pathogenesis | 2018
Rocío Colello; María Victoria Vélez; Juliana González; David Montero; Ana V. Bustamante; Felipe Del Canto; Analía I. Etcheverría; Roberto Vidal; Nora Lía Padola
Shiga toxin-producing Escherichia coli (STEC) are important foodborne pathogens that can cause severe disease. The ability to adhere to epithelial cells is an important virulence trait and pathogenicity islands (PAIs) play an important role. Recently, researchers identified a member of the Heat-resistant agglutinin family and characterized this antigen named Hemagglutinin from Shiga toxin-producing E. coli (Hes). More importantly, they showed that hes and other genes such as iha, pagC and agn43 were integrated in each of the four modules present in the new PAI named Locus of Adhesion and Autoaggregation (LAA) whose presence is associated with severe disease linked to with LEE-negatives STEC. The distribution of LAA among STEC strains isolates from different origins between 2000 and 2015 from cattle, the farm environment, and food and harboring diverse virulence was investigated. The STEC strains were characterized by PCR to detect three modules of LAA and agn43 (as marker of module IV), and phylogenetic groups were determined. LAA was found in 46% of LEE-negative STEC corresponding to serogroups O91, O174, O113, O171, O178, O130 and others. The presence of this PAI is associated with strains harboring stx2 (56%) and belonging to phylogroup B1 (91%). LAA is a novel pathogenicity island associated with strains isolated from Hemolytic Uremic Syndrome cases. Therefore, the results of this study contribute to a better understanding regarding the pathogenicity of this emergent subset of STEC strains harboring LAA as a predictor of virulence of LEE-negative STEC strains.
Microorganisms | 2018
Rocío Colello; Alejandra Krüger; José Di Conza; John W. A. Rossen; Alexander W. Friedrich; Gabriel Gutkind; Analía I. Etcheverría; Nora Lía Padola
The aim of this study was to investigate the presence of class 1 integrons in a collection of Shiga toxin-producing Escherichia coli (STEC) from different origins and to characterize pheno- and genotypically the antimicrobial resistance associated to them. A collection of 649 isolates were screened for the class 1 integrase gene (intI1) by Polymerase chain reaction The variable region of class 1 integrons was amplified and sequenced. Positive strains were evaluated for the presence of antimicrobial resistance genes with microarray and for antimicrobial susceptibility by the disk diffusion method. Seven out of 649 STEC strains some to serogroups, O26, O103 and O130 isolated from cattle, chicken burger, farm environment and pigs were identified as positive for intl1. Different arrangements of gene cassettes were detected in the variable region of class 1 integron: dfrA16, aadA23 and dfrA1-aadA1. In almost all strains, phenotypic resistance to streptomycin, tetracycline, trimethoprim/sulfamethoxazole, and sulfisoxazole was observed. Microarray analyses showed that most of the isolates carried four or more antimicrobial resistance markers and STEC strains were categorized as Multridrug-resistant. Although antimicrobials are not usually used in the treatment of STEC infections, the presence of Multridrug-resistant in isolates collected from farm and food represents a risk for animal and human health.
Frontiers in Microbiology | 2018
Rocío Colello; María Julia Ruiz; Valeria Padín; Ariel Diego Rogé; Gerardo A. Leotta; Nora Lía Padola; Analía I. Etcheverría
The aim of the present study was to determine the prevalence of Salmonella in the pork production chain and to characterize Salmonella isolates. From 764 samples, 35 (4.6%) were positive for Salmonella spp., as determined by biochemical tests and the presence of the invA gene. From these, 2.6, 2.0, 8.8, and 8.0% corresponded to samples collected from farms, slaughterhouses, boning rooms and retail markets, respectively. Salmonella strains were classified into five serotypes and distributed as follows: S. Typhimurium in the pork production chain, S. Kentucky in farms and slaughterhouses, S. Brandenburg in slaughterhouses, S. Livingstone in farms and S. Agona in boning rooms and retail markets. Interestingly, the antimicrobial susceptibility testing indicated that all 35 Salmonella spp.-positive isolates were resistant to at least one antimicrobial agent, and 30 were multidrug-resistant (MDR) and resistant to different classes of antibiotics. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) analysis showed clonal relatedness among strains isolated from farms, boning rooms and retail markets. The presence of antibiotic-resistant Salmonella in food poses a potential health hazard to consumers.
Revista Argentina De Microbiologia | 2017
María J. Ruiz; Rocío Colello; Nora Lía Padola; Analía I. Etcheverría
Archive | 2017
Paula M. A. Lucchesi; Analía I. Etcheverría; Andrea Mariel Sanso; Ana V. Bustamante; Daniel Fernández; Marcelo E. Sanz; Rocío Colello; María E. Cáceres; María Julia Ruiz; Julia Burgán; Jimena Soledad Cadona; Juliana González; L. Hernández; M. García; V. Vélez; Guillermo H. Arroyo; Nora Lía Padola
Analecta Veterinaria | 2013
Fabiana Moredo; Rocío Colello; Marcelo E. Sanz; Javier A. Cappuccio; Martín Carriquiriborde; Analía I. Etcheverría; Carlos J. Perfumo; Nora Lía Padola; Gerardo A. Leotta