Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anand Bala Subramaniam is active.

Publication


Featured researches published by Anand Bala Subramaniam.


Nature Materials | 2005

Controlled assembly of jammed colloidal shells on fluid droplets

Anand Bala Subramaniam; Manouk Abkarian; Howard A. Stone

Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.


Nature | 2005

Colloid science: Non-spherical bubbles

Anand Bala Subramaniam; Manouk Abkarian; L. Mahadevan; Howard A. Stone

Surface tension gives gas bubbles their perfect spherical shape by minimizing the surface area for a given volume. Here we show that gas bubbles and liquid drops can exist in stable, non-spherical shapes if the surface is covered, or ‘armoured’, with a close-packed monolayer of particles. When two spherical armoured bubbles are fused, jamming of the particles on the interface supports the unequal stresses that are necessary to stabilize a non-spherical shape.


Physical Review Letters | 2007

Dissolution Arrest and Stability of Particle-Covered Bubbles

Manouk Abkarian; Anand Bala Subramaniam; Shin-Hyun Kim; Ryan J. Larsen; Seung-Man Yang; Howard A. Stone

Experiments show that bubbles covered with monodisperse polystyrene particles, with particle to bubble radius ratios of about 0.1, evolve to form faceted polyhedral shapes that are stable to dissolution in air-saturated water. We perform Surface Evolver simulations and find that the faceted particle-covered bubble represents a local minimum of energy. At the faceted state, the Laplace overpressure vanishes, which together with the positive slope of the bubble pressure-volume curve, ensures phase stability. The repulsive interactions between the particles cause a reduction of the curvature of the gas-liquid interface, which is the mechanism that arrests dissolution and stabilizes the bubbles.


Lab on a Chip | 2013

Paper-based electroanalytical devices with an integrated, stable reference electrode

Wen-Jie Lan; E. Jane Maxwell; Claudio Parolo; David K. Bwambok; Anand Bala Subramaniam; George M. Whitesides

This paper describes the development of a referenced Electrochemical Paper-based Analytical Device (rEPAD) comprising a sample zone, a reference zone, and a connecting microfluidic channel that includes a central contact zone. We demonstrated that the rEPADs provide a simple system for direct and accurate voltammetric measurements that are referenced by an electrode with a constant, well-defined potential. The performance of the rEPADs is comparable to commercial electrochemical cells, and the layout can be easily integrated into systems that permit multiplexed analysis and pipette-free sampling. The cost of this portable device is sufficiently low that it could be for single-use, disposable applications, and its method of fabrication is compatible with that used for other paper-based systems.


Biomaterials | 2014

Polymer-based mesh as supports for multi-layered 3D cell culture and assays

Karen Alambra Simon; Kyeng Min Park; Bobak Mosadegh; Anand Bala Subramaniam; Aaron D. Mazzeo; Philip M. Ngo; George M. Whitesides

Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system-Cells-in-Gels-in-Mesh (CiGiM)-that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells-layer-by-layer-within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis-(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format.


Advanced Materials | 2010

Particle/Fluid Interface Replication as a Means of Producing Topographically Patterned Polydimethylsiloxane Surfaces for Deposition of Lipid Bilayers

Anand Bala Subramaniam; Sigolene Lecuyer; Kumaran S. Ramamurthi; Richard Losick; Howard A. Stone

Microstructured surfaces are common in many materials applications such as microcontact printing,[1,2] biomimetic arrays, [3]controlled-wetting surfaces,[4] superhydrophobic surfaces, [5] and self-cleaning surfaces[6]among others. The majority of strategies for surface fabrication utilize some form of photolithography to achieve patterning. Photolithographic patterning is essentially two-dimensional;[1–4]it does not allow control over geometric parameters in the third dimension such as the surface profile and curvature (the topography) of fabricated features. To overcome the inherent limitations of photolithography, the fabrication of topographically patterned substrates for applications of supported lipid bilayers[7, 8]requires a combination of microfabrication techniques: photolithography followed by anisotropic plasma dry etching and wet oxide etching,[7] or chemical vapor deposition followed by photolithography and chemical etching.[8] These pioneering methods, while successful in producing topographically patterned surfaces capable of imposing gradients of curvature on supported bilayers, are technically complex and require costly clean room or microfabrication facilities. An alternative method is thus desirable, particularly since there is intense interest in the role of curvature in the thermodynamics and dynamics of lipid bilayers[7–11]and membrane proteins[12–14]in the wider fields of biology and physics.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Noncontact orientation of objects in three-dimensional space using magnetic levitation.

Anand Bala Subramaniam; Dian Yang; Hai-Dong Yu; Alex Nemiroski; Simon Tricard; Audrey K. Ellerbee; Siowling Soh; George M. Whitesides

Significance We describe several noncontact methods of orienting objects in three-dimensional (3D) space using Magnetic Levitation (MagLev), and report the discovery of a sharp geometry-dependent transition of the orientation of levitating objects. An analytical theory of the orientation of arbitrary objects in MagLev explains this transition. MagLev is capable of manipulating and orienting hard and soft objects, and objects of irregular shape. Because controlling the orientation of objects in space is a prerequisite for assembling complex structures from simpler components, this paper extends MagLev into 3D self-assembly, robotic assembly, and noncontact (stiction-free) orientation of hard and soft objects for applications in biomimetics, soft robotics, and stimulus-responsive materials, among others. This paper describes several noncontact methods of orienting objects in 3D space using Magnetic Levitation (MagLev). The methods use two permanent magnets arranged coaxially with like poles facing and a container containing a paramagnetic liquid in which the objects are suspended. Absent external forcing, objects levitating in the device adopt predictable static orientations; the orientation depends on the shape and distribution of mass within the objects. The orientation of objects of uniform density in the MagLev device shows a sharp geometry-dependent transition: an analytical theory rationalizes this transition and predicts the orientation of objects in the MagLev device. Manipulation of the orientation of the levitating objects in space is achieved in two ways: (i) by rotating and/or translating the MagLev device while the objects are suspended in the paramagnetic solution between the magnets; (ii) by moving a small external magnet close to the levitating objects while keeping the device stationary. Unlike mechanical agitation or robotic selection, orienting using MagLev is possible for objects having a range of different physical characteristics (e.g., different shapes, sizes, and mechanical properties from hard polymers to gels and fluids). MagLev thus has the potential to be useful for sorting and positioning components in 3D space, orienting objects for assembly, constructing noncontact devices, and assembling objects composed of soft materials such as hydrogels, elastomers, and jammed granular media.


Nature Materials | 2013

Glycans pattern the phase behaviour of lipid membranes

Anand Bala Subramaniam; Guido Guidotti; Vinothan N. Manoharan; Howard A. Stone

Hydrated networks of glycans (polysaccharides)--in the form of cell walls, periplasms or gel-like matrices--are ubiquitously present adjacent to cellular plasma membranes. Yet, despite their abundance, the function of glycans in the extracellular milieu is largely unknown. Here we show that the spatial configuration of glycans controls the phase behaviour of multiphase model lipid membranes: inhomogeneous glycan networks stabilize large lipid domains at the characteristic length scale of the network, whereas homogeneous networks suppress macroscopic lipid phase separation. We also find that glycan-patterned phase separation is thermally reversible--thus indicating that the effect is thermodynamic rather than kinetic--and that phase patterning probably results from a preferential interaction of glycans with ordered lipid phases. These findings have implications for membrane-mediated transport processes, potentially rationalize long-standing observations that differentiate the behaviour of native and model membranes and may indicate an intimate coupling between cellular lipidomes and glycomes.


Soft Matter | 2011

Semi-permeable vesicles composed of natural clay

Anand Bala Subramaniam; Jiandi Wan; Arvind Gopinath; Howard A. Stone

We report a simple route to form robust, inorganic, semi-permeable compartments composed of montmorillonite, a natural plate-like clay mineral that occurs widely in the environment. Mechanical forces due to shear in a narrow gap assemble clay nanoplates from an aqueous suspension onto air bubbles. Translucent vesicles suspended in a single-phase liquid are produced when the clay-covered air bubbles are exposed to a variety of water-miscible organic liquids and water-soluble surfactants. These vesicles of clay are mechanically robust and are stable in water and other liquids. We find that the wetting of organic liquids on clay explains the formation of clay vesicles from clay armored bubbles. Clay vesicles are microporous, exhibit size-selective permeability, and support spontaneous compartmentalization of self-assembling molecules in aqueous environments. The results we report here expand our understanding of potential paths to micro-compartmentalization in natural settings and are of relevance to theories of colloidal aggregation, mineral cycles, and the origins of life.


Advanced Materials | 2015

Using Magnetic Levitation for Non-Destructive Quality Control of Plastic Parts

Jonathan W. Hennek; Alex Nemiroski; Anand Bala Subramaniam; David K. Bwambok; Dian Yang; Daniel V. Harburg; Simon Tricard; Audrey K. Ellerbee; George M. Whitesides

Magnetic levitation (MagLev) enables rapid and non-destructive quality control of plastic parts. The feasibility of MagLev as a method to: i) rapidly assess injection-molded plastic parts for defects during process optimization, ii) monitor the degradation of plastics after exposure to harsh environmental conditions, and iii) detect counterfeit polymers by density is demonstrated.

Collaboration


Dive into the Anand Bala Subramaniam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manouk Abkarian

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge