Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anang A. Shelat is active.

Publication


Featured researches published by Anang A. Shelat.


Nature | 2010

Chemical genetics of Plasmodium falciparum

W. Armand Guiguemde; Anang A. Shelat; David Bouck; Sandra Duffy; Gregory J. Crowther; Paul H. Davis; David C. Smithson; Michele C. Connelly; Julie Clark; Fangyi Zhu; María Belén Jiménez-Díaz; María Santos Martínez; Emily B. Wilson; Abhai K. Tripathi; Jiri Gut; Elizabeth R. Sharlow; Ian Bathurst; Farah El Mazouni; Joseph W. Fowble; Isaac P. Forquer; Paula L. McGinley; Steve Castro; Iñigo Angulo-Barturen; Santiago Ferrer; Philip J. Rosenthal; Joseph L. DeRisi; David J. Sullivan; John S. Lazo; David S. Roos; Michael K. Riscoe

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Journal of Biological Chemistry | 2010

Identification and characterization of the first small molecule inhibitor of MDMX.

Damon R. Reed; Ying Shen; Anang A. Shelat; Leggy A. Arnold; Antonio M. Ferreira; Fangyi Zhu; Nicholas Mills; David C. Smithson; Catherine Regni; Donald Bashford; Samantha A. Cicero; Brenda A. Schulman; Aart G. Jochemsen; R. Kiplin Guy; Michael A. Dyer

The p53 pathway is disrupted in virtually every human tumor. In ∼50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased expression of MDM2 or MDMX. MDM2 and MDMX bind p53 and inhibit its function by distinct nonredundant mechanisms. Small molecule inhibitors and small peptides have been developed that bind MDM2 in the p53-binding pocket and displace the p53 protein, leading to p53-mediated cell cycle exit and apoptosis. To date, peptide inhibitors of MDMX have been developed, but no small molecule inhibitors have been reported. We have developed biochemical and cell-based assays for high throughput screening of chemical libraries to identify MDMX inhibitors and identified the first MDMX inhibitor SJ-172550. This compound binds reversibly to MDMX and effectively kills retinoblastoma cells in which the expression of MDMX is amplified. The effect of SJ-172550 is additive when combined with an MDM2 inhibitor. Results from a series of biochemical and structural modeling studies suggest that SJ-172550 binds the p53-binding pocket of MDMX, thereby displacing p53. This lead compound is a useful chemical scaffold for further optimization of MDMX inhibitors that may eventually be used to treat pediatric cancers and various adult tumors that overexpress MDMX or have similar genetic lesions. When combined with selective MDM2 inhibitors, SJ-172550 may also be useful for treating tumors that express wild-type p53.


Cancer Cell | 2013

Targeting Oxidative Stress in Embryonal Rhabdomyosarcoma

Xiang Chen; Elizabeth Stewart; Anang A. Shelat; Chunxu Qu; Armita Bahrami; Mark E. Hatley; Gang Wu; Cori Bradley; Justina McEvoy; Alberto S. Pappo; Sheri L. Spunt; Marcus B. Valentine; Virginia Valentine; Fred Krafcik; Walter H. Lang; Monika Wierdl; Lyudmila Tsurkan; Viktor Tolleman; Sara M. Federico; Chris Morton; Charles Lu; Li Ding; John Easton; Michael Rusch; Panduka Nagahawatte; Jianmin Wang; Matthew Parker; Lei Wei; Erin Hedlund; David Finkelstein

Rhabdomyosarcoma is a soft-tissue sarcoma with molecular and cellular features of developing skeletal muscle. Rhabdomyosarcoma has two major histologic subtypes, embryonal and alveolar, each with distinct clinical, molecular, and genetic features. Genomic analysis shows that embryonal tumors have more structural and copy number variations than alveolar tumors. Mutations in the RAS/NF1 pathway are significantly associated with intermediate- and high-risk embryonal rhabdomyosarcomas (ERMS). In contrast, alveolar rhabdomyosarcomas (ARMS) have fewer genetic lesions overall and no known recurrently mutated cancer consensus genes. To identify therapeutics for ERMS, we developed and characterized orthotopic xenografts of tumors that were sequenced in our study. High-throughput screening of primary cultures derived from those xenografts identified oxidative stress as a pathway of therapeutic relevance for ERMS.


Structure | 2003

Catalysis, Specificity, and ACP Docking Site of Streptomyces coelicolor Malonyl-CoA:ACP Transacylase

Adrian T. Keatinge-Clay; Anang A. Shelat; David F. Savage; Shiou-Chuan Tsai; Larry J. W. Miercke; Joseph D. O'Connell; Chaitan Khosla; Robert M. Stroud

Malonyl-CoA:ACP transacylase (MAT), the fabD gene product of Streptomyces coelicolor A3(2), participates in both fatty acid and polyketide synthesis pathways, transferring malonyl groups that are used as extender units in chain growth from malonyl-CoA to pathway-specific acyl carrier proteins (ACPs). Here, the 2.0 A structure reveals an invariant arginine bound to an acetate that mimics the malonyl carboxylate and helps define the extender unit binding site. Catalysis may only occur when the oxyanion hole is formed through substrate binding, preventing hydrolysis of the acyl-enzyme intermediate. Macromolecular docking simulations with actinorhodin ACP suggest that the majority of the ACP docking surface is formed by a helical flap. These results should help to engineer polyketide synthases (PKSs) that produce novel polyketides.


Chemical Biology & Drug Design | 2006

Searching for new antimalarial therapeutics amongst known drugs.

Jennifer L. Weisman; Ally P. Liou; Anang A. Shelat; Fred E. Cohen; R. Kiplin Guy; Joseph L. DeRisi

The need to discover and develop new antimalarial therapeutics is overwhelming. The annual mortality attributed to malaria, currently approximately 2.5 million, is increasing due primarily to widespread resistance to currently used drugs. One strategy to identify new treatment alternatives for malaria is to examine libraries of diverse compounds for the possible identification of novel scaffolds. Beginning with libraries of drug or drug‐like compounds is an ideal starting point because, in the case of approved drugs, substantial pharmacokinetic and toxicologic data should be available for each compound series. We have employed a high‐throughput screen of the MicroSource Spectrum and Killer Collections, a library of known drugs, bioactive compounds, and natural products. Our screening assay identifies compounds that inhibit growth of Plasmodium falciparum cultured in human erythrocytes. We have identified 36 novel inhibitors of P. falciparum, of which 19 are therapeutics, and five of these drugs exhibit effective 50% inhibitory concentrations within similar ranges to therapeutic serum concentrations for their recently indicated uses: propafenone, thioridazine, chlorprothixene, perhexiline, and azlocillin. The findings we report here indicate that this is an effective strategy to identify novel scaffolds and therefore aid in antimalarial drug discovery efforts.


Proceedings of the National Academy of Sciences of the United States of America | 2014

(+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid host-mediated clearance of Plasmodium

María Belén Jiménez-Díaz; Daniel H. Ebert; Yandira Salinas; Anupam Pradhan; Adele M. Lehane; Marie-Eve Myrand-Lapierre; Kathleen O’Loughlin; David M. Shackleford; Mariana Justino de Almeida; Angela K. Carrillo; Julie Clark; Adelaide S. M. Dennis; Jonathon Diep; Xiaoyan Deng; Sandra Duffy; Aaron N. Endsley; Greg Fedewa; W. Armand Guiguemde; María G. Gómez; Gloria Holbrook; Jeremy A. Horst; Charles C. Kim; Jian Liu; Marcus C. S. Lee; Amy Matheny; María Santos Martínez; Gregory Miller; Ane Rodríguez-Alejandre; Laura Sanz; Martina Sigal

Significance Useful antimalarial drugs must be rapidly acting, highly efficacious, and have low potential for developing resistance. (+)-SJ733 targets a Plasmodium cation-transporting ATPase, ATP4. (+)-SJ733 cleared parasites in vivo as quickly as artesunate by specifically inducing eryptosis/senescence in infected, treated erythrocytes. Although in vitro selection of pfatp4 mutants with (+)-SJ733 proceeded with moderate frequency, during in vivo selection of pbatp4 mutants, resistance emerged slowly and produced marginally resistant mutants with poor fitness. In addition, (+)-SJ733 met all other criteria for a clinical candidate, including high oral bioavailability, a high safety margin, and transmission blocking activity. These results demonstrate that targeting ATP4 has great potential to deliver useful drugs for malaria eradication. Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na+ levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na+ homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.


Chemical Biology & Drug Design | 2006

Discovery of Trypanocidal Compounds by Whole Cell HTS of Trypanosoma brucei

Zachary B. Mackey; Arthur M. Baca; Jeremy P. Mallari; Beth Apsel; Anang A. Shelat; Elizabeth Hansell; Peter K. Chiang; Brian Wolff; Kiplin R. Guy; Janice Williams; James H. McKerrow

Chemotherapy against human African trypanosomiasis relies on four drugs that cause frequent and occasionally severe side‐effects. Because human African trypanosomiasis is a disease of poor people in Africa, the traditional market‐driven pathways to drug development are not available. One potentially rapid and cost‐effective approach to identifying and developing new trypanocidal drugs would be high throughput‐screening of existing drugs already approved for other uses, as well as clinical candidates in late development. We have developed an ATP‐bioluminescence assay that could be used to rapidly and efficiently screen compound libraries against trypanosomes in a high throughput‐screening format to validate this notion. We screened a collection of 2160 FDA‐approved drugs, bioactive compounds and natural products to identify hits that were cytotoxic to cultured Trypanosoma brucei at a concentration of 1 μm or less. This meant that any hit identified would be effective at a concentration readily achievable by standard drug dosing in humans. From the screen, 35 hits from seven different drug categories were identified. These included the two approved trypanocidal drugs, suramin and pentamidine, several other drugs suspected but never validated as trypanocidal, and 17 novel trypanocidal drugs.


Journal of Biological Chemistry | 2005

Discovery of Small Molecule Inhibitors of the Interaction of the Thyroid Hormone Receptor with Transcriptional Coregulators

Leggy A. Arnold; Eva Estébanez-Perpiñá; Marie Togashi; Natalia Jouravel; Anang A. Shelat; Andrea C. McReynolds; Ellena Mar; Phuong Nguyen; John D. Baxter; Robert J. Fletterick; Paul Webb; R. Kiplin Guy

Thyroid hormone (3,5,3′-triiodo-l-thyronine, T3) is an endocrine hormone that exerts homeostatic regulation of basal metabolic rate, heart rate and contractility, fat deposition, and other phenomena (1, 2). T3 binds to the thyroid hormone receptors (TRs) and controls their regulation of transcription of target genes. The binding of TRs to thyroid hormone induces a conformational change in TRs that regulates the composition of the transcriptional regulatory complex. Recruitment of the correct coregulators (CoR) is important for successful gene regulation. In principle, inhibition of the TR-CoR interaction can have a direct influence on gene transcription in the presence of thyroid hormones. Herein we report a high throughput screen for small molecules capable of inhibiting TR coactivator interactions. One class of inhibitors identified in this screen was aromatic β-aminoketones, which exhibited IC50 values of ∼2 μm. These compounds can undergo a deamination, generating unsaturated ketones capable of reacting with nucleophilic amino acids. Several experiments confirm the hypothesis that these inhibitors are covalently bound to TR. Optimization of these compounds produced leads that inhibited the TR-CoR interaction in vitro with potency of ∼0.6 μm and thyroid signaling in cellular systems. These are the first small molecules irreversibly inhibiting the coactivator binding of a nuclear receptor and suppressing its transcriptional activity.


Cancer Cell | 2014

Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma.

Marie Morfouace; Anang A. Shelat; Megan O. Jacus; Burgess B. Freeman; David C. Turner; Sarah Robinson; Frederique Zindy; Yong Dong Wang; David Finkelstein; Olivier Ayrault; Laure Bihannic; Stéphanie Puget; Xiao Nan Li; James M. Olson; Giles W. Robinson; R. Kiplin Guy; Clinton F. Stewart; Amar Gajjar; Martine F. Roussel

We devised a high-throughput, cell-based assay to identify compounds to treat Group3 medulloblastoma (G3 MB). Mouse G3 MBs neurospheres were screened against a library of approximately 7,000 compounds including US Food and Drug Administration-approved drugs. We found that pemetrexed and gemcitabine preferentially inhibited G3 MB proliferation in vitro compared to control neurospheres and substantially inhibited G3 MB proliferation in vivo. When combined, these two drugs significantly increased survival of mice bearing cortical implants of mouse and human G3 MBs that overexpress MYC compared to each agent alone, while having little effect on mouse MBs of the sonic hedgehog subgroup. Our findings strongly suggest that combination therapy with pemetrexed and gemcitabine is a promising treatment for G3 MBs.


Bioorganic & Medicinal Chemistry | 2003

Benzoflavone activators of the cystic fibrosis transmembrane conductance regulator: towards a pharmacophore model for the nucleotide-binding domain.

Mark F. Springsteel; Luis J. V. Galietta; Tonghui Ma; Kolbot By; Gideon O. Berger; Hong Yang; Christopher W. Dicus; Wonken Choung; Chao Quan; Anang A. Shelat; R. Kiplin Guy; A. S. Verkman; Mark J. Kurth; Michael H. Nantz

Our previous screen of flavones and related heterocycles for the ability to activate the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel indicated that UCCF-029, a 7,8-benzoflavone, was a potent activator. In the present study, we describe the synthesis and evaluation, using cell-based assays, of a series of benzoflavone analogues to examine structure-activity relationships and to identify compounds having greater potency for activation of both wild type CFTR and a mutant CFTR (G551D-CFTR) that causes cystic fibrosis in some human subjects. Using UCCF-029 as a structural guide, a panel of 77 flavonoid analogues was prepared. Analysis of the panel in FRT cells indicated that benzannulation of the flavone A-ring at the 7,8-position greatly improved compound activity and potency for several flavonoids. Incorporation of a B-ring pyridyl nitrogen either at the 3- or 4-position also elevated CFTR activity, but the influence of this structural modification was not as uniform as the influence of benzannulation. The most potent new analogue, UCCF-339, activated wild-type CFTR with a K(d) of 1.7 microM, which is more active than the previous most potent flavonoid activator of CFTR, apigenin. Several compounds in the benzoflavone panel also activated G551D-CFTR, but none were as active as apigenin. Pharmacophore modeling suggests a common binding mode for the flavones and other known CFTR activators at one of the nucleotide-binding sites, allowing for the rational development of more potent flavone analogues.

Collaboration


Dive into the Anang A. Shelat's collaboration.

Top Co-Authors

Avatar

R. Kiplin Guy

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Taosheng Chen

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Stewart

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michele C. Connelly

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Wenwei Lin

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Alberto S. Pappo

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Martine F. Roussel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

David C. Smithson

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael A. Dyer

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Sara M. Federico

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge