Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David C. Smithson is active.

Publication


Featured researches published by David C. Smithson.


Nature | 2010

Chemical genetics of Plasmodium falciparum

W. Armand Guiguemde; Anang A. Shelat; David Bouck; Sandra Duffy; Gregory J. Crowther; Paul H. Davis; David C. Smithson; Michele C. Connelly; Julie Clark; Fangyi Zhu; María Belén Jiménez-Díaz; María Santos Martínez; Emily B. Wilson; Abhai K. Tripathi; Jiri Gut; Elizabeth R. Sharlow; Ian Bathurst; Farah El Mazouni; Joseph W. Fowble; Isaac P. Forquer; Paula L. McGinley; Steve Castro; Iñigo Angulo-Barturen; Santiago Ferrer; Philip J. Rosenthal; Joseph L. DeRisi; David J. Sullivan; John S. Lazo; David S. Roos; Michael K. Riscoe

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library—many of which showed potent in vitro activity against drug-resistant P. falciparum strains—and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Journal of Biological Chemistry | 2010

Identification and characterization of the first small molecule inhibitor of MDMX.

Damon R. Reed; Ying Shen; Anang A. Shelat; Leggy A. Arnold; Antonio M. Ferreira; Fangyi Zhu; Nicholas Mills; David C. Smithson; Catherine Regni; Donald Bashford; Samantha A. Cicero; Brenda A. Schulman; Aart G. Jochemsen; R. Kiplin Guy; Michael A. Dyer

The p53 pathway is disrupted in virtually every human tumor. In ∼50% of human cancers, the p53 gene is mutated, and in the remaining cancers, the pathway is dysregulated by genetic lesions in other genes that modulate the p53 pathway. One common mechanism for inactivation of the p53 pathway in tumors that express wild-type p53 is increased expression of MDM2 or MDMX. MDM2 and MDMX bind p53 and inhibit its function by distinct nonredundant mechanisms. Small molecule inhibitors and small peptides have been developed that bind MDM2 in the p53-binding pocket and displace the p53 protein, leading to p53-mediated cell cycle exit and apoptosis. To date, peptide inhibitors of MDMX have been developed, but no small molecule inhibitors have been reported. We have developed biochemical and cell-based assays for high throughput screening of chemical libraries to identify MDMX inhibitors and identified the first MDMX inhibitor SJ-172550. This compound binds reversibly to MDMX and effectively kills retinoblastoma cells in which the expression of MDMX is amplified. The effect of SJ-172550 is additive when combined with an MDM2 inhibitor. Results from a series of biochemical and structural modeling studies suggest that SJ-172550 binds the p53-binding pocket of MDMX, thereby displacing p53. This lead compound is a useful chemical scaffold for further optimization of MDMX inhibitors that may eventually be used to treat pediatric cancers and various adult tumors that overexpress MDMX or have similar genetic lesions. When combined with selective MDM2 inhibitors, SJ-172550 may also be useful for treating tumors that express wild-type p53.


Journal of Natural Products | 2010

Automated high-throughput system to fractionate plant natural products for drug discovery.

Ying Tu; Cynthia Jeffries; Hong Ruan; Cynthia Nelson; David C. Smithson; Anang A. Shelat; Kristin M. Brown; Xing-Cong Li; Jp Hester; Tj Smillie; Ikhlas A. Khan; Larry A. Walker; Kip Guy; Bing Yan

The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA, and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities.


PLOS ONE | 2012

On the Mechanism of Action of SJ-172550 in Inhibiting the Interaction of MDM4 and p53

Michal Bista; David C. Smithson; Aleksandra Pecak; Gabriella Salinas; Katarzyna Pustelny; Jaeki Min; Artur Pirog; Kristin Finch; Michal Zdzalik; Brett Waddell; Benedykt Wladyka; Sylwia Kedracka-Krok; Michael A. Dyer; Grzegorz Dubin; R. Kiplin Guy

SJ-172550 (1) was previously discovered in a biochemical high throughput screen for inhibitors of the interaction of MDMX and p53 and characterized as a reversible inhibitor (J. Biol. Chem. 2010; 285∶10786). Further study of the biochemical mode of action of 1 has shown that it acts through a complicated mechanism in which the compound forms a covalent but reversible complex with MDMX and locks MDMX into a conformation that is unable to bind p53. The relative stability of this complex is influenced by many factors including the reducing potential of the media, the presence of aggregates, and other factors that influence the conformational stability of the protein. This complex mechanism of action hinders the further development of compound 1 as a selective MDMX inhibitor.


Journal of Natural Products | 2014

UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small-molecule natural product libraries.

Jin Yang; Qian Liang; Mei Wang; Cynthia Jeffries; David C. Smithson; Ying Tu; Nidal Boulos; Melissa R. Jacob; Anang A. Shelat; Yunshan Wu; Ranga Rao Ravu; Richard J. Gilbertson; Mitchell A. Avery; Ikhlas A. Khan; Larry A. Walker; R. Kiplin Guy; Xing-Cong Li

The generation of natural product libraries containing column fractions, each with only a few small molecules, using a high-throughput, automated fractionation system, has made it possible to implement an improved dereplication strategy for selection and prioritization of leads in a natural product discovery program. Analysis of databased UPLC-MS-ELSD-PDA information of three leads from a biological screen employing the ependymoma cell line EphB2-EPD generated details on the possible structures of active compounds present. The procedure allows the rapid identification of known compounds and guides the isolation of unknown compounds of interest. Three previously known flavanone-type compounds, homoeriodictyol (1), hesperetin (2), and sterubin (3), were identified in a selected fraction derived from the leaves of Eriodictyon angustifolium. The lignan compound deoxypodophyllotoxin (8) was confirmed to be an active constituent in two lead fractions derived from the bark and leaves of Thuja occidentalis. In addition, two new but inactive labdane-type diterpenoids with an uncommon triol side chain were also identified as coexisting with deoxypodophyllotoxin in a lead fraction from the bark of T. occidentalis. Both diterpenoids were isolated in acetylated form, and their structures were determined as 14S,15-diacetoxy-13R-hydroxylabd-8(17)-en-19-oic acid (9) and 14R,15-diacetoxy-13S-hydroxylabd-8(17)-en-19-oic acid (10), respectively, by spectroscopic data interpretation and X-ray crystallography. This work demonstrates that a UPLC-MS-ELSD-PDA database produced during fractionation may be used as a powerful dereplication tool to facilitate compound identification from chromatographically tractable small-molecule natural product libraries.


Journal of Biological Chemistry | 2010

Discovery of potent and selective inhibitors of Trypanosoma brucei ornithine decarboxylase

David C. Smithson; Jeongmi Lee; Anang A. Shelat; Margaret A. Phillips; R. Kiplin Guy

Human African trypanosomiasis, caused by the eukaryotic parasite Trypanosoma brucei, is a serious health problem in much of central Africa. The only validated molecular target for treatment of human African trypanosomiasis is ornithine decarboxylase (ODC), which catalyzes the first step in polyamine metabolism. Here, we describe the use of an enzymatic high throughput screen of 316,114 unique molecules to identify potent and selective inhibitors of ODC. This screen identified four novel families of ODC inhibitors, including the first inhibitors selective for the parasitic enzyme. These compounds display unique binding modes, suggesting the presence of allosteric regulatory sites on the enzyme. Docking of a subset of these inhibitors, coupled with mutagenesis, also supports the existence of these allosteric sites.


Journal of Medicinal Chemistry | 2013

Optimization of chloronitrobenzamides (CNBs) as therapeutic leads for Human African Trypanosomiasis (HAT)

Jong Yeon Hwang; David C. Smithson; Fangyi Zhu; Gloria Holbrook; Michele C. Connelly; Marcel Kaiser; Reto Brun; R. Kiplin Guy

We previously reported the discovery of the activity of chloronitrobenzamides (CNBs) against bloodstream forms of Trypanosoma brucei . Herein we disclose extensive structure-activity relationship and structure-property relationship studies aimed at identification of tractable early leads for clinical development. These studies revealed a promising lead compound, 17b, that exhibited nanomolar potency against T. brucei (EC50 = 27 nM for T. b. brucei, 7 nM for T. b. rhodesiense, and 2 nM for T. b. gambiense ) with excellent selectivity for parasite cells relative to mammalian cell lines (EC50 > 25 μM). In addition compound 17b displayed suitable physiochemical characteristics and microsomal stability (t1/2 > 4 h for human and mouse) to justify pursuing in vivo studies.


Assay and Drug Development Technologies | 2010

Optimization of a Non-Radioactive High-Throughput Assay for Decarboxylase Enzymes

David C. Smithson; Anang A. Shelat; Jeffrey Baldwin; Margaret A. Phillips; R. Kiplin Guy

Herein, we describe the optimization of a linked enzyme assay suitable for high-throughput screening of decarboxylases, a target family whose activity has historically been difficult to quantify. Our approach uses a commercially available bicarbonate detection reagent to measure decarboxylase activity. The assay is performed in a fully enclosed automated screening system under inert nitrogen atmosphere to minimize perturbation by exogenous CO2. Receiver operating characteristic (ROC) analysis following a pilot screen of a small library of approximately 3,600 unique molecules for inhibitors of Trypanosoma brucei ornithine decarboxylase quantitatively demonstrates that the assay has excellent discriminatory power (area under the curve = 0.90 with 95% confidence interval between 0.82 and 0.97).


Bioorganic & Medicinal Chemistry Letters | 2013

Optimization of the electrophile of chloronitrobenzamide leads active against Trypanosoma brucei.

Jong Yeon Hwang; David C. Smithson; Gloria Holbrook; Fangyi Zhu; Michele C. Connelly; Marcel Kaiser; Reto Brun; R. Kiplin Guy

We previously reported the phenylchloronitrobenzamides (PCNBs), a novel class of compounds active against the species of trypanosomes that cause Human African Trypanosomiasis (HAT). Herein, we explored the potential to adjust the reactivity of the electrophilic chloronitrobenzamide core. These studies identified compound 7d that potently inhibited the growth of trypanosomes (EC50=120nM for Trypanosoma b. brucei, 18nM for Trypanosoma b. rhodesiense, and 38nM for Trypanosoma b. gambiense) without significant cytotoxicity against mammalian cell lines (EC50>25μM for HepG2, HEK293, Raji, and BJ cell lines) and also had good stability in microsomal models (t1/2>4h in both human and mouse). Overall these properties indicate the compound 7d and its analogs are worth further exploration as potential leads for HAT.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of halo-nitrobenzamides with potential application against human African trypanosomiasis

Jong Yeon Hwang; David C. Smithson; Michele C. Connelly; Julie Maier; Fangyi Zhu; Kiplin R. Guy

A series of halo-nitrobenzamide were synthesized and evaluated for their ability to block proliferation of Trypanosoma brucei brucei. A number of these compounds had significant activity against the parasite, particularly 2-chloro-N-(4-chlorophenyl)-5-nitrobenzamide 17 which exhibited low micromolar inhibitory potency against T. brucei and selectivity towards both malaria and mammalian cells.

Collaboration


Dive into the David C. Smithson's collaboration.

Top Co-Authors

Avatar

R. Kiplin Guy

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Anang A. Shelat

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Fangyi Zhu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Michele C. Connelly

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Jeffries

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry A. Walker

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge