Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anastasia I. Kulemzina is active.

Publication


Featured researches published by Anastasia I. Kulemzina.


Chromosome Research | 2009

Cross-species chromosome painting in Cetartiodactyla: Reconstructing the karyotype evolution in key phylogenetic lineages

Anastasia I. Kulemzina; Vladimir A. Trifonov; Polina L. Perelman; Nadezhda V. Rubtsova; Vitaly Volobuev; Malcolm A. Ferguson-Smith; Roscoe Stanyon; Fengtang Yang; Alexander S. Graphodatsky

Recent molecular and morphological studies place Artiodactyla and Cetacea into the order Cetartiodactyla. Within the Cetartiodactyla such families as Bovidae, Cervidae, and Suidae are well studied by comparative chromosome painting, but many taxa that are crucial for understanding cetartiodactyl phylogeny remain poorly studied. Here we present the genome-wide comparative maps of five cetartiodactyl species obtained by chromosome painting with human and dromedary paint probes from four taxa: Cetacea, Hippopotamidae, Giraffidae, and Moschidae. This is the first molecular cytogenetic report on pilot whale, hippopotamus, okapi, and Siberian musk deer. Our results, when integrated with previously published comparative chromosome maps allow us to reconstruct the evolutionary pathway and rates of chromosomal rearrangements in Cetartiodactyla. We hypothesize that the putative cetartiodactyl ancestral karyotype (CAK) contained 25–26 pairs of autosomes, 2n = 52–54, and that the association of human chromosomes 8/9 could be a cytogenetic signature that unites non-camelid cetartiodactyls. There are no unambiguous cytogenetic landmarks that unite Hippopotamidae and Cetacea. If we superimpose chromosome rearrangements on the supertree generated by Price and colleagues, several homoplasy events are needed to explain cetartiodactyl karyotype evolution. Our results apparently favour a model of non-random breakpoints in chromosome evolution. Cetariodactyl karyotype evolution is characterized by alternating periods of low and fast rates in various lineages. The highest rates are found in Suina (Suidae+Tayasuidae) lineage (1.76 rearrangements per million years (R/My)) and the lowest in Cetaceans (0.07 R/My). Our study demonstrates that the combined use of human and camel paints is highly informative for revealing evolutionary karyotypic rearrangements among cetartiodactyl species.


Molecular Cytogenetics | 2015

Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting

Svetlana A. Romanenko; Larisa S. Biltueva; Natalya A. Serdyukova; Anastasia I. Kulemzina; Violetta R. Beklemisheva; Olga L. Gladkikh; Natalia A. Lemskaya; Elena A. Interesova; Marina A. Korentovich; Nadezhda V. Vorobieva; Alexander S. Graphodatsky; Vladimir A. Trifonov

BackgroundAcipenseriformes take a basal position among Actinopteri and demonstrate a striking ploidy variation among species. The sterlet (Acipenser ruthenus, Linnaeus, 1758; ARUT) is a diploid 120-chromosomal sturgeon distributed in Eurasian rivers from Danube to Enisey. Despite a high commercial value and a rapid population decline in the wild, many genomic characteristics of sterlet (as well as many other sturgeon species) have not been studied.ResultsCell lines from different tissues of 12 sterlet specimens from Siberian populations were established following an optimized protocol. Conventional cytogenetic studies supplemented with molecular cytogenetic investigations on obtained fibroblast cell lines allowed a detailed description of sterlet karyotype and a precise localization of 18S/28S and 5S ribosomal clusters. Localization of sturgeon specific HindIII repetitive elements revealed an increased concentration in the pericentromeric region of the acrocentric ARUT14, while the total sterlet repetitive DNA fraction (C0t30) produced bright signals on subtelomeric segments of small chromosomal elements. Chromosome and region specific probes ARUT1p, 5, 6, 7, 8 as well as 14 anonymous small sized chromosomes (probes A-N) generated by microdissection were applied in chromosome painting experiments. According to hybridization patterns all painting probes were classified into two major groups: the first group (ARUT5, 6, 8 as well as microchromosome specific probes C, E, F, G, H, and I) painted only a single region each on sterlet metaphases, while probes of the second group (ARUT1p, 7 as well as microchromosome derived probes A, B, D, J, K, M, and N) marked two genomic segments each on different chromosomes. Similar results were obtained on male and female metaphases.ConclusionsThe sterlet genome represents a complex mosaic structure and consists of diploid and tetraploid chromosome segments. This may be regarded as a transition stage from paleotetraploid (functional diploid) to diploid genome condition. Molecular cytogenetic and genomic studies of other 120- and 240-chromosomal sturgeons are needed to reconstruct genome evolution of this vertebrate group.


Cytogenetic and Genome Research | 2010

Reconstruction of the putative cervidae ancestral karyotype by chromosome painting of Siberian roe deer (Capreolus pygargus) with dromedary probes.

P.V. Dementyeva; Vladimir A. Trifonov; Anastasia I. Kulemzina; Alexander S. Graphodatsky

The Siberian roe deer (Capreolus pygargus) is one of a few deer species presumably preserving the ancestral cervid karyotype. The comparative genomic data of the Siberian roe deer are critical for our understanding of the karyotypic relationships within artiodactyls. We have established chromosomal homologies between the Siberian roe deer and the dromedary (Camelus dromedarius) by cross-species chromosome painting with dromedary chromosome-specific painting probes. Dromedary chromosome paints detected 53 autosomal homologies in the genome of the Siberian roe deer. The identification of chromosomal homologies between the Siberian roe deer and cattle resulted from previously detected cattle-dromedary homologies. We have found 8 chromosomal rearrangements (6 fissions in the Siberian roe deer, 1 fission in the cattle and 1 inversion on the CPY11) that have separated the karyotypes of the cattle and the Siberian roe deer. The inversion on CPY11 might be an apomorphic trait of cervids, since we detected its presence in the gray brocket deer (Mazama gouazoubira). Thus our data further prove the scenario of chromosomal rearrangements that was previously proposed and add some new data.


Chromosome Research | 2013

Molecular cytogenetic insights to the phylogenetic affinities of the giraffe (Giraffa camelopardalis) and pronghorn (Antilocapra americana)

Halina Cernohorska; Svatava Kubickova; Olga Kopecna; Anastasia I. Kulemzina; Polina L. Perelman; Frederick F. B. Elder; Terence J. Robinson; Alexander S. Graphodatsky; Jiri Rubes

Five families are traditionally recognized within higher ruminants (Pecora): Bovidae, Moschidae, Cervidae, Giraffidae and Antilocapridae. The phylogenetic relationships of Antilocapridae and Giraffidae within Pecora are, however, uncertain. While numerous fusions (mostly Robertsonian) have accumulated in the giraffe’s karyotype (Giraffa camelopardalis, Giraffidae, 2n = 30), that of the pronghorn (Antilocapra americana, Antilocapridae, 2n = 58) is very similar to the hypothesised pecoran ancestral state (2n = 58). We examined the chromosomal rearrangements of two species, the giraffe and pronghorn, using a combination of fluorescence in situ hybridization painting probes and BAC clones derived from cattle (Bos taurus, Bovidae). Our data place Moschus (Moschidae) closer to Bovidae than Cervidae. Although the alternative (i.e., Moschidae + Cervidae as sister groups) could not be discounted in recent sequence-based analyses, cytogenetics bolsters conclusions that the former is more likely. Additionally, DNA sequences were isolated from the centromeric regions of both species and compared. Analysis of cenDNA show that unlike the pronghorn, the centromeres of the giraffe are probably organized in a more complex fashion comprising different repetitive sequences specific to single chromosomal pairs or groups of chromosomes. The distribution of nucleolar organiser region (NOR) sites, often an effective phylogenetic marker, were also examined in the two species. In the giraffe, the position of NORs seems to be autapomorphic since similar localizations have not been found in other species within Pecora.


Chromosoma | 2016

Evolutionary plasticity of acipenseriform genomes.

Vladimir A. Trifonov; Svetlana S. Romanenko; Violetta R. Beklemisheva; Larisa S. Biltueva; Alexey I. Makunin; Natalia A. Lemskaya; Anastasia I. Kulemzina; Roscoe Stanyon; Alexander S. Graphodatsky

Acipenseriformes is an order of ray-finned fishes, comprising 27 extant species of sturgeons and paddlefishes inhabiting waters of the Northern Hemisphere. The order has a basal position within Actinopteri (ray-finned fish minus polypterids) and is characterized by many specific morphological and genomic features, including high diploid chromosome numbers, various levels of ploidy between species, unclear sex determination, and propensity to interspecific hybridization. Recent advances in molecular genetics, genomics, and comparative cytogenetics produced novel data on different aspects of acipenseriform biology, including improved phylogenetic reconstructions and better understanding of genome structure. Here, we discuss the cytogenetic and genomic traits of acipenseriforms and their connection with polyploidization and tolerance to interspecific hybridization.


Genes | 2017

X chromosome evolution in cetartiodactyla

Anastasia A. Proskuryakova; Anastasia I. Kulemzina; Polina L. Perelman; Alexey I. Makunin; Denis M. Larkin; Marta Farré; Anna V. Kukekova; Jennifer L. Johnson; Natalya A. Lemskaya; Violetta R. Beklemisheva; Melody E. Roelke-Parker; June Bellizzi; Oliver A. Ryder; Stephen J. O’Brien; Alexander S. Graphodatsky

The phenomenon of a remarkable conservation of the X chromosome in eutherian mammals has been first described by Susumu Ohno in 1964. A notable exception is the cetartiodactyl X chromosome, which varies widely in morphology and G-banding pattern between species. It is hypothesized that this sex chromosome has undergone multiple rearrangements that changed the centromere position and the order of syntenic segments over the last 80 million years of Cetartiodactyla speciation. To investigate its evolution we have selected 26 evolutionarily conserved bacterial artificial chromosome (BAC) clones from the cattle CHORI-240 library evenly distributed along the cattle X chromosome. High-resolution BAC maps of the X chromosome on a representative range of cetartiodactyl species from different branches: pig (Suidae), alpaca (Camelidae), gray whale (Cetacea), hippopotamus (Hippopotamidae), Java mouse-deer (Tragulidae), pronghorn (Antilocapridae), Siberian musk deer (Moschidae), and giraffe (Giraffidae) were obtained by fluorescent in situ hybridization. To trace the X chromosome evolution during fast radiation in specious families, we performed mapping in several cervids (moose, Siberian roe deer, fallow deer, and Pere David’s deer) and bovid (muskox, goat, sheep, sable antelope, and cattle) species. We have identified three major conserved synteny blocks and rearrangements in different cetartiodactyl lineages and found that the recently described phenomenon of the evolutionary new centromere emergence has taken place in the X chromosome evolution of Cetartiodactyla at least five times. We propose the structure of the putative ancestral cetartiodactyl X chromosome by reconstructing the order of syntenic segments and centromere position for key groups.


Cytogenetic and Genome Research | 2016

Comparative Chromosome Map and Heterochromatin Features of the Gray Whale Karyotype (Cetacea)

Anastasia I. Kulemzina; Anastasia A. Proskuryakova; Violetta R. Beklemisheva; Natalia A. Lemskaya; Polina L. Perelman; Alexander S. Graphodatsky

Cetacean karyotypes possess exceptionally stable diploid numbers and highly conserved chromosomes. To date, only toothed whales (Odontoceti) have been analyzed by comparative chromosome painting. Here, we studied the karyotype of a representative of baleen whales, the gray whale (Eschrichtius robustus, Mysticeti), by Zoo-FISH with dromedary camel and human chromosome-specific probes. We confirmed a high degree of karyotype conservation and found an identical order of syntenic segments in both branches of cetaceans. Yet, whale chromosomes harbor variable heterochromatic regions constituting up to a third of the genome due to the presence of several types of repeats. To investigate the cause of this variability, several classes of repeated DNA sequences were mapped onto chromosomes of whale species from both Mysticeti and Odontoceti. We uncovered extensive intrapopulation variability in the size of heterochromatic blocks present in homologous chromosomes among 3 individuals of the gray whale by 2-step differential chromosome staining. We show that some of the heteromorphisms observed in the gray whale karyotype are due to distinct amplification of a complex of common cetacean repeat and heavy satellite repeat on homologous autosomes. Furthermore, we demonstrate localization of the telomeric repeat in the heterochromatin of both gray and pilot whale (Globicephala melas, Odontoceti). Heterochromatic blocks in the pilot whale represent a composite of telomeric and common repeats, while heavy satellite repeat is lacking in the toothed whale consistent with previous studies.


PLOS ONE | 2016

The Ancestral Carnivore Karyotype As Substantiated by Comparative Chromosome Painting of Three Pinnipeds, the Walrus, the Steller Sea Lion and the Baikal Seal (Pinnipedia, Carnivora).

Violetta R. Beklemisheva; Polina L. Perelman; Natalya A. Lemskaya; Anastasia I. Kulemzina; Anastasia A. Proskuryakova; Vladimir N. Burkanov; Alexander S. Graphodatsky

Karyotype evolution in Carnivora is thoroughly studied by classical and molecular cytogenetics and supplemented by reconstructions of Ancestral Carnivora Karyotype (ACK). However chromosome painting information from two pinniped families (Odobenidae and Otariidae) is noticeably missing. We report on the construction of the comparative chromosome map for species from each of the three pinniped families: the walrus (Odobenus rosmarus, Odobenidae–monotypic family), near threatened Steller sea lion (Eumetopias jubatus, Otariidae) and the endemic Baikal seal (Pusa sibirica, Phocidae) using combination of human, domestic dog and stone marten whole-chromosome painting probes. The earliest karyological studies of Pinnipedia showed that pinnipeds were characterized by a pronounced karyological conservatism that is confirmed here with species from Phocidae, Otariidae and Odobenidae sharing same low number of conserved human autosomal segments (32). Chromosome painting in Pinnipedia and comparison with non-pinniped carnivore karyotypes provide strong support for refined structure of ACK with 2n = 38. Constructed comparative chromosome maps show that pinniped karyotype evolution was characterized by few tandem fusions, seemingly absent inversions and slow rate of genome rearrangements (less then one rearrangement per 10 million years). Integrative comparative analyses with published chromosome painting of Phoca vitulina revealed common cytogenetic signature for Phoca/Pusa branch and supports Phocidae and Otaroidea (Otariidae/Odobenidae) as sister groups. We revealed rearrangements specific for walrus karyotype and found the chromosomal signature linking together families Otariidae and Odobenidae. The Steller sea lion karyotype is the most conserved among three studied species and differs from the ACK by single fusion. The study underlined the strikingly slow karyotype evolution of the Pinnipedia in general and the Otariidae in particular.


Archive | 2018

Pinniped Karyotype Evolution Substantiated by Comparative Chromosome Painting of 10 Pinniped Species (Pinnipedia, Carnivora)

Violetta R. Beklemisheva; Polina L. Perelman; Natalya A. Lemskaya; Anastasia I. Kulemzina; Anastasiya A. Proskuryakova; Vladimir N. Burkanov; Stephen J. O'Brien; Alexander S. Graphodatsky

In memory of Ingemar Gustavsson 23rd International Colloquium on Animal Cytogenetics and Genomics (23 ICACG) took place in June 9–12, 2018 in Saint-Petersburg, Russia. Organized biennially, the Colloquium runs from 1970. From its very start this meeting is associated with the name of Ingemar Gustavsson to whom we dedicated the Colloquium 2018. The long and productive career of Ingemar Gustavsson had focused on chromosomes and their fundamental role in animal physiology, fertility, health and production in the context of agriculture and veterinary medicine. His meticulous analysis of breeding data performed back in 1964–69 resulted in the unequivocal identification of an association between heterozygosity for the 1/29 translocation in Swedish cattle and reduction in the fertility of the breed. Eventually, the argument in favor of selective elimination of bulls carrying the translocation from the breeding programs prevailed and the field of modern veterinary cytogenetics was established. Participants from fourteen different countries attended the 23 ICACG in Russia, the country having long lasting traditions in cytogenetics and the Scientific schools of N.K. Koltzov, S.S. Chetverikov and A.S. Serebrovsky, geneticists who made important conceptual contributions to studies of chromosomes and genes, population genetics and evolutionary theory as early as in the beginning of the XX-th century. All the abstracts received were subdivided between plenary and seven scientific sessions covering the issues in evolutionary and comparative cytogenetics, cytogenetics and genomes of domestic animals, meiosis studies, particular chromosome analyses, clinical cytogenetics, karyotypes and genomes of vertebrate and invertebrate animals, chromatin studies. In the abstract text below each presentation is marked with a capital letter: „L” stands for lectures, „O” for oral presentations and „P” for poster presentations. We gratefully acknowledge the support from the Saint-Petersburg Association of Scientists and Scholars (SPbSU), Veterinary Genetics Center ZOOGEN, Russian Foundation for Basic Research (RFBR), VEUK, Helicon, Axioma BIO, BioVitrum, Sartorius, DIA-M companies. The current collected abstracts comprise written contributions of the presentations during the 23 ICACG and were edited by Svetlana Galkina and Maria Vishnevskaya. The next Colloquium – 24 ICACG – will be held at the University of Kent in Canterbury (UK) in 2020. Please, cite abstracts as follows: Gall JG (2018) Giant chromosomes and deep sequences: what the amphibian egg tells us about transcription. In: Galkina SA, Vishnevskaya MS, Mikhailova EI (Eds) 23rd Inernational Colloquium on Animal Cytogenetics and Genomics (23rdICACG), June 9–12, 2018, St Petersburg, Russia. Comparative Cytogenetics 12(3): p–p. https://doi.org/10.3897/CompCytogen.v12i3.27748The ultimate aim of a genome assembly is to create a contiguous length of sequence from the p- to q- terminus of each chromosome. Most assemblies are however highly fragmented, limiting their use in studies of gene mapping, phylogenomics and genomic organisation. To overcome these limitations, we developed a novel scaffold-to-chromosome anchoring method combining reference-assisted chromosome assembly (RACA) and fluorescence in situ hybridisation (FISH) to position scaffolds from de novo genomes onto chromosomes. Using RACA, scaffolds were ordered and orientated into ‘predicted chromosome fragments’ (PCFs) against a reference and outgroup genome. PCFs were verified using PCR prior to FISH mapping. A universal set of FISH probes developed through the selection of conserved regions were then used to map PCFs of peregrine falcon (Falco peregrinus Tunstall, 1771), pigeon (Columba livia Gmelin, 1789), ostrich (Struthio camelus Linnaeus, 1758), saker falcon (Falco cherrug Gray, 1834) the budgerigar (Melopsittacus undulatus Shaw, 1805). Using this approach, we were able to improve the N50 of genomes seven-fold. Results revealed that Interchromosomal breakpoint regions are limited to regions with low sequence conservation, shedding light on why most avian species have very stable karyotypes. Our combined FISH and bioinformatics approach represents a step-change in the mapping of genome assemblies, allowing comparative genomic research at a higher resolution than was previously possible. The universal probe set facilitates research into avian karyotype evolution and the role of chromosome rearrangements in adaptation and phenotypic diversity in birds. Indeed, they have been used on over 20 avian species plus non-avian reptiles (including turtles), shedding light into the evolution of dinosaur species. Non-avian dinosaurs remain subjects of intense biological enquiry while pervading popular culture and the creative arts. While organismal studies focus primarily on their morphology, relationships, likely behaviour, and ecology there have been few academic studies that have made extensive extrapolations about the nature of non-avian dinosaur genome structure prior to the emergence of modern birds. We have used multiple avian whole genome sequences assembled at a chromosomal level, to reconstruct the most likely gross genome organization of the overall genome structure of the diapsid ancestor and reconstruct the sequence of inter and intrachromosomal events that most likely occurred along the Archosauromorpha-Archosauria-Avemetatarsalia-Dinosauria-Theropoda-Maniraptora-Avialae lineage from the lepidosauromorph-archosauromorph divergence ~275 million years ago through to extant neornithine birds.


Mitochondrial DNA | 2018

Population genetic structure and phylogeography of sterlet (Acipenser ruthenus, Acipenseridae) in the Ob and Yenisei river basins

Maria A. Pobedintseva; Alexey I. Makunin; Iliya G. Kichigin; Anastasia I. Kulemzina; Nataliya A. Serdyukova; Svetlana A. Romanenko; Nadezhda V. Vorobieva; Elena A. Interesova; Marina A. Korentovich; Vladimir F. Zaytsev; Andrey V. Mischenko; Vladimir A. Zadelenov; Andrey A. Yurchenko; Dmitry Yu. Sherbakov; Alexander S. Graphodatsky; Vladimir A. Trifonov

Abstract The sterlet (Acipenser ruthenus Linnaeus, 1758) is a relatively small sturgeon widely distributed in Eurasian rivers from the Danube to the Yenisei. During the twentieth century, all wild sterlet populations have declined due to anthropogenic factors including: overfishing, poaching, construction of dams, and pollution. Despite the necessity of characterization both wild and captive stocks, few studies of population genetics have been performed thus far. Here we studied the genetic diversity and geographic structure of sterlet populations across the eastern range – Ob-Irtysh and Yenisei basins – by sequencing a 628-bp fragment of mitochondrial DNA control region. We identified 98 new haplotypes, delineated 12 haplogroups and estimated the time of basal haplogroup divergence within the species as over 8 million years ago. Our data suggest that Ob-Irtysh and Yenisei populations are isolated from each other and much lower genetic diversity is present in the Yenisei population than in the Ob-Irtysh population. Our data imply that sterlet populations in Siberian rivers underwent bottleneck or fragmentation, followed by subsequent population expansion. The data obtained here are important for sterlet population monitoring and restocking management.

Collaboration


Dive into the Anastasia I. Kulemzina's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Polina L. Perelman

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir A. Trifonov

Novosibirsk State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexey I. Makunin

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Larisa S. Biltueva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver A. Ryder

Zoological Society of San Diego

View shared research outputs
Researchain Logo
Decentralizing Knowledge