Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anastasia Sobolewski is active.

Publication


Featured researches published by Anastasia Sobolewski.


Journal of Experimental Medicine | 2005

Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-κB activity

Sarah R. Walmsley; Cristin G. Print; Neda Farahi; Carole Peyssonnaux; Randall S. Johnson; Thorsten Cramer; Anastasia Sobolewski; Alison M. Condliffe; Andrew S. Cowburn; Nicola Johnson; Edwin R. Chilvers

Neutrophils are key effector cells of the innate immune response and are required to migrate and function within adverse microenvironmental conditions. These inflammatory sites are characterized by low levels of oxygen and glucose and high levels of reductive metabolites. A major regulator of neutrophil functional longevity is the ability of these cells to undergo apoptosis. We examined the mechanism by which hypoxia causes an inhibition of neutrophil apoptosis in human and murine neutrophils. We show that neutrophils possess the hypoxia-inducible factor (HIF)-1α and factor inhibiting HIF (FIH) hydroxylase oxygen-sensing pathway and using HIF-1α–deficient myeloid cells demonstrate that HIF-1α is directly involved in regulating neutrophil survival in hypoxia. Gene array, TaqMan PCR, Western blotting, and oligonucleotide binding assays identify NF-κB as a novel hypoxia-regulated and HIF-dependent target, with inhibition of NF-κB by gliotoxin or parthenolide resulting in the abrogation of hypoxic survival. In addition, we identify macrophage inflammatory protein-1β as a novel hypoxia-induced neutrophil survival factor.


Circulation Research | 2008

Mutations in Bone Morphogenetic Protein Type II Receptor Cause Dysregulation of Id Gene Expression in Pulmonary Artery Smooth Muscle Cells Implications for Familial Pulmonary Arterial Hypertension

Jun Yang; Rachel J. Davies; Mark Southwood; Lu Long; Xudong Yang; Anastasia Sobolewski; Paul D. Upton; Richard C. Trembath; Nicholas W. Morrell

Heterozygous germ line mutations in the gene encoding the bone morphogenetic protein (BMP) type II receptor occur in more than 80% of patients with familial pulmonary arterial hypertension. Because inhibitors of DNA binding (Id) genes are major targets of BMP/Smad signaling, we studied the regulation of these transcription factors in pulmonary artery smooth muscle cells harboring mutations in BMP type II receptor and control cells. Mutant cells demonstrated a marked deficiency in BMP4-stimulated Id1 and Id2 gene and protein expression compared with control cells. Mutant cells were deficient in Smad1/5 signaling in response to BMPs but also in extracellular signal-regulated kinase (ERK)1/2 activation. We provide evidence for an important interaction between Smad1/5 and ERK1/2 signaling in the regulation of Id gene expression. Thus, BMP4-induced Id1 expression was negatively regulated by ERK1/2 activation. The mechanism involves ERK1/2-dependent phosphorylation of the Smad1 linker region (serine 206), which limits C-terminal serine 463/465 phosphorylation and inhibits Smad nuclear accumulation. Furthermore, activation of ERK1/2 by platelet-derived growth factor BB also caused Smad1 linker region phosphorylation and inhibited BMP4-induced Id1 gene expression. In contrast, Id2 expression was positively regulated by ERK1/2. Moreover, we show that both BMP type II receptor mutation and Id1 knockdown leads to loss of growth suppression by BMPs. Taken together, these findings indicate an important interaction between ERK1/2 and Smad1/5 in the regulation of Id genes. Platelet-derived growth factor, via ERK1/2, further impairs the deficiency in Smad signaling found in BMP type II receptor mutant cells. The integration of these signals at the level of Id gene expression may contribute to the pathogenesis of familial pulmonary arterial hypertension.


Human Molecular Genetics | 2008

Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue

Anastasia Sobolewski; Nung Rudarakanchana; Paul D. Upton; Jun Yang; Trina K. Crilley; Richard C. Trembath; Nicholas W. Morrell

Heterozygous germline mutations in the gene encoding the bone morphogenetic protein type II receptor cause familial pulmonary arterial hypertension (PAH). We previously demonstrated that the substitution of cysteine residues in the ligand-binding domain of this receptor prevents receptor trafficking to the cell membrane. Here we demonstrate the potential for chemical chaperones to rescue cell-surface expression of mutant BMPR-II and restore function. HeLa cells were transiently transfected with BMPR-II wild type or mutant (C118W) receptor constructs. Immunolocalization studies confirmed the retention of the cysteine mutant receptor mainly in the endoplasmic reticulum. Co-immunoprecipitation studies of Myc-tagged BMPR-II confirmed that the cysteine-substituted ligand-binding domain mutation, C118W, is able to associate with BMP type I receptors. Furthermore, following treatment with a panel of chemical chaperones (thapsigargin, glycerol or sodium 4-phenylbutyrate), we demonstrated a marked increase in cell-surface expression of mutant C118W BMPR-II by FACS analysis and confocal microscopy. These agents also enhanced the trafficking of wild-type BMPR-II, though to a lesser extent. Increased cell-surface expression of mutant C118W BMPR-II was associated with enhanced Smad1/5 phosphorylation in response to BMPs. These findings demonstrate the potential for rescue of mutant BMPR-II function from the endoplasmic reticulum. For the C118W mutation in the ligand-binding domain of BMPR-II, cell-surface rescue leads to at least partial restoration of BMP signalling. We conclude that enhancement of cell-surface trafficking of mutant and wild-type BMPR-II may have therapeutic potential in familial PAH.


Gut | 2013

Canonical Wnt signals combined with suppressed TGFβ/BMP pathways promote renewal of the native human colonic epithelium

Amy Reynolds; Natalia Wharton; Alyson Parris; Esther M. Mitchell; Anastasia Sobolewski; Christy Kam; Loren Bigwood; Ahmed El Hadi; Andrea Münsterberg; Michael P. Lewis; Christopher Speakman; William Stebbings; Richard Wharton; Kevin Sargen; Richard Tighe; Crawford Jamieson; James Hernon; Sandeep Kapur; Naohide Oue; Wataru Yasui; Mark Williams

Background A defining characteristic of the human intestinal epithelium is that it is the most rapidly renewing tissue in the body. However, the processes underlying tissue renewal and the mechanisms that govern their coordination have proved difficult to study in the human gut. Objective To investigate the regulation of stem cell-driven tissue renewal by canonical Wnt and TGFβ/bone morphogenetic protein (BMP) pathways in the native human colonic epithelium. Design Intact human colonic crypts were isolated from mucosal tissue samples and placed into 3D culture conditions optimised for steady-state tissue renewal. High affinity mRNA in situ hybridisation and immunohistochemistry were complemented by functional genomic and bioimaging techniques. The effects of signalling pathway modulators on the status of intestinal stem cell biology, crypt cell proliferation, migration, differentiation and shedding were determined. Results Native human colonic crypts exhibited distinct activation profiles for canonical Wnt, TGFβ and BMP pathways. A population of intestinal LGR5/OLFM4-positive stem/progenitor cells were interspersed between goblet-like cells within the crypt-base. Exogenous and crypt cell-autonomous canonical Wnt signals supported homeostatic intestinal stem/progenitor cell proliferation and were antagonised by TGFβ or BMP pathway activation. Reduced Wnt stimulation impeded crypt cell proliferation, but crypt cell migration and shedding from the crypt surface were unaffected and resulted in diminished crypts. Conclusions Steady-state tissue renewal in the native human colonic epithelium is dependent on canonical Wnt signals combined with suppressed TGFβ/BMP pathways. Stem/progenitor cell proliferation is uncoupled from crypt cell migration and shedding, and is required to constantly replenish the crypt cell population.


Journal of Biological Chemistry | 2006

Aminopeptidase N (CD13) Regulates Tumor Necrosis Factor-α-induced Apoptosis in Human Neutrophils

Andrew S. Cowburn; Anastasia Sobolewski; Ben J. Reed; John Deighton; Joanna Murray; Karen A. Cadwallader; John R. Bradley; Edwin R. Chilvers

Neutrophil apoptosis plays a central role in the resolution of granulocytic inflammation. We have shown previously that tumor necrosis factor-α (TNFα) enhances the rate of neutrophil apoptosis at early time points via a mechanism involving both TNF receptor (TNFR) I and TNFRII. Here we reveal a marked but consistent variation in the magnitude of the pro-apoptotic effect of TNFα in neutrophils isolated from healthy donors, and we show that inhibition of cell surface aminopeptidase N (APN) using actinonin, bestatin, or inhibitory peptides significantly enhanced the efficacy of TNFα-induced killing. Notably, an inverse correlation is shown to exist between neutrophil APN activity and the sensitivity of donor cells to TNFα-induced apoptosis. Inhibition of cell surface APN appears to interfere with the shedding of TNFRI, and as a consequence results in augmented TNFα-induced apoptosis, cell polarization, and TNFα-primed, formyl-methionyl-leucyl-phenylalanine-stimulated respiratory burst. Of note, actinonin and bestatin had no effect on TNFRII expression under resting or TNFα-stimulated conditions and did not alter CXCRI or CXCRII expression. These data suggest significant variation in the activity of APN/CD13 on the cell surface of neutrophils in normal individuals and reveal a novel mechanism whereby APN/CD13 regulates TNFα-induced apoptosis via inhibition of TNFRI shedding. This has therapeutic relevance for driving neutrophil apoptosis in vivo.


Journal of Immunology | 2007

Eotaxin-1/CC Chemokine Ligand 11: A Novel Eosinophil Survival Factor Secreted by Human Pulmonary Artery Endothelial Cells

Neda Farahi; Andrew S. Cowburn; Paul D. Upton; John Deighton; Anastasia Sobolewski; Ermanno Gherardi; Nicholas W. Morrell; Edwin R. Chilvers

Airway eosinophilia plays a major role in the pathogenesis of asthma with the inhibition of apoptosis by GM-CSF and IL-5 proposed as a mechanism underlying prolonged eosinophil survival. In vivo and ex vivo studies have indicated the capacity of interventions that drive human eosinophil apoptosis to promote the resolution of inflammation. Far less is known about the impact of transendothelial migration on eosinophil survival, in particular, the capacity of endothelial cell-derived factors to contribute toward the apoptosis-resistant phenotype characteristic of airway-resident eosinophils. We examined the effects of conditioned medium from human pulmonary artery endothelial cells (HPAEC-CM) on eosinophil apoptosis in vitro. HPAEC-CM inhibited eosinophil, but not neutrophil apoptosis. This effect was specific to HPAECs and comparable in efficacy to the survival effects of GM-CSF and IL-5. The HPAEC survival factor was shown, on the basis of GM-CSF, IL-5, and IL-3 detection assays, Ab neutralization, and sensitivity to PI3K inhibition, to be clearly discrete from these factors. Gel filtration of HPAEC-CM revealed a peak of eosinophil survival activity at 8–12 kDa, and PCR confirmed the presence of mRNA for CCL5, CCL11, CCL24, CCL26, and CCL27 in the HPAECs. The CCR3 antagonist GW782415 caused a major inhibition of the HPAEC-CM-induced survival effect, and Ab neutralization of individual CCR3 chemokines revealed CCL11 as the major survival factor present in the HPAEC-CM. Furthermore, chemokine Ab arrays demonstrated up-regulation of CCL11 in HPAEC-CM. These data demonstrate the capacity of HPAECs to generate CCR3 agonists and the ability of CCL11 to inhibit human eosinophil apoptosis.


Biochemical Society Transactions | 2004

Characterization of the survival effect of tumour necrosis factor-alpha in human neutrophils

Sarah R. Walmsley; Andrew S. Cowburn; Anastasia Sobolewski; Joanna Murray; Neda Farahi; Ian Sabroe; Edwin R. Chilvers

Granulocyte apoptosis has been proposed as a fundamental, injury-limiting granulocyte-clearance mechanism. As such, inhibition of this process may prevent the resolution of inflammation. Our previous studies have shown that TNFalpha (tumour necrosis factor-alpha) has a bi-modal influence on the rate of constitutive neutrophil apoptosis in vitro, causing early acceleration and late inhibition of this process. The pro-apoptotic effect is uniquely TNFR1 (TNF receptor 1) and TNFR2-dependent and the latter survival process is mediated via phosphoinositide 3-kinase and NF-kappaB (nuclear factor-kappaB) activation. In the present study, we show that, in contrast with GM-CSF (granulocyte/macrophage colony-stimulating factor), the delayed addition (i.e. at 6 h) of TNFalpha increases its survival effect despite substantial loss of neutrophil TNFR1 and TNFR2 at that time. This paradox was resolved using PBMC (peripheral blood mononuclear cell)-deplete and 5% PBMC-replete neutrophil cultures, where the enhanced survival effect observed after delayed TNFalpha addition was shown to be PBMC-dependent. TNFR2-blocking antibodies had no effect on the late survival effect of TNFalpha, implying a TNFR1-dependent process. Finally, I-kappaBalpha (inhibitory kappaB-alpha) and NF-kappaB time-course studies demonstrated that the survival effects of both GM-CSF and TNFalpha could be explained by maintenance of functional NF-kappaB.


Clinical & Experimental Allergy | 2011

Effects of the cyclin-dependent kinase inhibitor R-roscovitine on eosinophil survival and clearance

Neda Farahi; Jatinder K. Juss; A J Langton; Andrew S. Cowburn; A Gibson; M R Foster; Stuart N. Farrow; P Marco-Casanova; Anastasia Sobolewski; Alison M. Condliffe; Edwin R. Chilvers

Background Eosinophils are pro‐inflammatory cells implicated in the pathogenesis of asthma and atopy. Apoptosis has been proposed as a potential mechanism underlying the resolution of eosinophilic inflammation and studies have indicated the ability of interventions that induce human eosinophil apoptosis to promote the resolution of eosinophilic inflammation. Recently, the cyclin‐dependent kinase (CDK) inhibitor R‐roscovitine was shown to enhance neutrophil apoptosis and promote the resolution of neutrophilic inflammation.


Journal of Immunology | 2014

Luminal Microbes Promote Monocyte–Stem Cell Interactions Across a Healthy Colonic Epithelium

Dagmara A. Skoczek; Petr Walczysko; Nikki Horn; Alyson Parris; Simon Clare; Mark Williams; Anastasia Sobolewski

The intestinal epithelium forms a vital barrier between luminal microbes and the underlying mucosal immune system. Epithelial barrier function is maintained by continuous renewal of the epithelium and is pivotal for gut homeostasis. Breaching of the barrier causes mobilization of immune cells to promote epithelial restitution. However, it is not known whether microbes at the luminal surface of a healthy epithelial barrier influence immune cell mobilization to modulate tissue homeostasis. Using a mouse colonic mucosal explant model, we demonstrate that close proximity of luminal microbes to a healthy, intact epithelium results in rapid mucus secretion and movement of Ly6C+7/4+ monocytes closer to epithelial stem cells. These early events are driven by the epithelial MyD88-signaling pathway and result in increased crypt cell proliferation and intestinal stem cell number. Over time, stem cell number and monocyte–crypt stem cell juxtapositioning return to homeostatic levels observed in vivo. We also demonstrate that reduced numbers of tissue Ly6C+ monocytes can suppress Lgr5EGFP+ stem cell expression in vivo and abrogate the response to luminal microbes ex vivo. The functional link between monocyte recruitment and increased crypt cell proliferation was further confirmed using a crypt–monocyte coculture model. This work demonstrates that the healthy gut epithelium mediates communication between luminal bacteria and monocytes, and monocytes can modulate crypt stem cell number and promote crypt cell proliferation to help maintain gut homeostasis.


Journal of Immunology | 2017

IL-6 Signaling Regulates Small Intestinal Crypt Homeostasis.

Victoria Jeffery; Andrew J. Goldson; Jack R. Dainty; Marcello Chieppa; Anastasia Sobolewski

Gut homeostasis is a tightly regulated process requiring finely tuned complex interactions between different cell types, growth factors, or cytokines and their receptors. Previous work has implicated a role for IL-6 and mucosal immune cells in intestinal regeneration following injury and in promoting inflammation and cancer. We hypothesized that IL-6 signaling could also modulate crypt homeostasis. Using mouse in vitro crypt organoid and in vivo models, this study first demonstrated that exogenous IL-6 promoted crypt organoid proliferation and increased stem cell numbers through pSTAT3 activation in Paneth cells. Immunolabeling studies showed that the IL-6 receptor was restricted to the basal membrane of Paneth cells both in vitro and in vivo and that the crypt epithelium also expressed IL-6. Either a blocking Ab to the IL-6 receptor or a neutralizing Ab to IL-6 significantly reduced in vitro basal crypt organoid proliferation and budding, and in vivo significantly reduced the number of nuclei and the number of Lgr5EGFP-positive stem cells per crypt compared with IgG-treated mice, with the number of Paneth cells per crypt also significantly reduced. Functional studies demonstrated that IL-6–induced in vitro crypt organoid proliferation and crypt budding was abrogated by the Wnt inhibitor IWP2. This work demonstrates that autocrine IL-6 signaling in the gut epithelium regulates crypt homeostasis through the Paneth cells and the Wnt signaling pathway.

Collaboration


Dive into the Anastasia Sobolewski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neda Farahi

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Williams

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alyson Parris

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar

A J Langton

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge