Anatoliy Manuilskiy
Mid Sweden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anatoliy Manuilskiy.
IEEE Sensors Journal | 2012
Henrik Andersson; Anatoliy Manuilskiy; Tomas Unander; Cecilia Lidenmark; Sven Forsberg; Hans-Erik Nilsson
In this paper, the design and the manufacture of an inkjet printed resistive type humidity sensor on paper are reported. After having been exposed to humidity above a given threshold level, the resistance of the sensor decreases substantially and remains at that level even when the humidity is reduced. It is possible to deduce the humidity level by monitoring the resistance. The main benefit of the printed sensor presented in this case is in relation to its very low production costs. It has also been shown that both the ink type and this paper combination used prove to be crucial in order to obtain the desired sensor effect. More research is required in order to fully understand the humidity sintering effect on the nano particle ink and the role of the substrate. However, the observed effect can be put to use in printed humidity sensors which possess a memory function. The sensor can be used in various applications for environmental monitoring, for example, in situations where a large number of inexpensive and disposable humidity sensors are required which are able to detect whether they have been subjected to high humidity. This could be the checking of transportation conditions of goods or monitoring humidity within buildings.
IEEE Transactions on Components, Packaging and Manufacturing Technology | 2012
Hans-Erik Nilsson; Tomas Unander; Johan Sidén; Henrik Andersson; Anatoliy Manuilskiy; Magnus Hummelgård; Mikael Gulliksson
A system integration scheme relevant for smart packaging applications is presented. Recent advances in printed electronics, radio frequency identification tag production, and standardization of communication protocols are factors that increase the design freedom for new applications. As in all new technology fields, the first products are expected to appear in the high-cost segment attracting early adopters in the form of niche products. A reasonable assumption is that these products will come from hybridization of different types of technologies. Such a scenario is likely since no technology solution available can provide all features that these types of applications demand. There is a need of standard solutions for hybridization of silicon devices and printed (or foil-type) components. Conductive ink technology is a powerful tool for hybridization and customization of large-area electronics, providing 3-D integration and large-area customization. However, high-performance communication and advanced processing demand the use of silicon. Smart hybridization solutions allow combination of the best from both worlds. This paper analyzes the requirements on hybridization technologies suitable for smart packaging applications and provides design examples on integration of intrusion surveillance solutions for cellulose-based packaging applications. It shows that even though the current hybridization technologies are far from optimal, they can provide a considerable design freedom and system performance.
IEEE Sensors Journal | 2011
Hans-Erik Nilsson; Henrik Andersson; Anatoliy Manuilskiy; Tomas Unander; Krister Hammarling; Johan Sidén; Mikael Gulliksson
A horizontal printed Write-Once-Read-Many (WORM) resistive memory has been developed for use in wireless sensor tags targeting single-event detection in smart packaging applications. The WORM memory can be programmed using a 1.5-V printed battery. An alternative programming method is to use chemical sintering which allows the development of exposure-time triggered single event tags that can be accessed wirelessly. The new WORM memory has very low losses in the ON-state which allows direct integration into antenna structures. A sensor tag that utilizes the WORM memory functionality and the well established Electronic Article Surveillance (EAS) communication standard has been outlined. Both active and fully passive sensor tag solutions have been proposed. The role of printed electronics in smart packaging applications has been reviewed and discussed. Important enabling factors for the future development have been highlighted, such as the need for hierarchical design and test tools, better printed interconnect technologies as well as better components that allow communication with existing information and communication technology (ICT) standards. This is illustrated and underlined by the presented smart packaging concept demonstrators.
Nanotechnology | 2014
Henrik Andersson; Anatoliy Manuilskiy; Stefan Haller; Magnus Hummelgård; Johan Sidén; Christine Hummelgård; Håkan Olin; Hans-Erik Nilsson
Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.
Nanotechnology | 2013
Henrik Andersson; Anatoliy Manuilskiy; Cecilia Lidenmark; Jinlan Gao; Thomas Öhlund; Sven Forsberg; Jonas Örtegren; Wolfgang Schmidt; Hans-Erik Nilsson
The resistance of inkjet printed lines using a silver nanoparticle based ink can be very dependent on the substrate. A very large difference in resistivity was observed for tracks printed on paper substrates with aluminum oxide based coatings compared to silica based coatings. Silica based coatings are often cationized with polymers using chloride as a counter ion. It is suggested that the precipitation of silver salts is the cause of the high resistivity, since papers pretreated with salt solutions containing ions that precipitate silver salts gave a high resistance. Silver nitrate has a high solubility and paper pretreated with nitrate ions gave a low resistivity without sintering. The results obtained show that, by choosing the correct type of paper substrate, it is possible to manufacture printed structures, such as interconnects on paper, without the need for, or at least to reduce the need for, post-print sintering. This phenomenon is, of course, ink specific. Inks without or with a low silver ion content are not expected to behave in this manner. In some sensor applications, a high resistivity is desired and, by using the correct combination of ink and paper, these types of sensors can be facilitated.
IEEE Sensors Journal | 2014
Henrik Andersson; Anatoliy Manuilskiy; Jinlan Gao; Cecilia Lidenmark; Johan Sidén; Sven Forsberg; Tomas Unander; Hans-Erik Nilsson
Thin inkjet-printed tracks of silver nanoparticles have previously been observed to show a non-reversible decrease in resistance when exposed to a high degree of relative humidity and thus providing sensor functionality with a memory effect. This paper provides a more in-depth explanation of the observed humidity sensor effect that originates from inkjet-printed silver nanoparticle sensors on a paper substrate. It is shown that the geometry of the sensor has a large effect on the sensors initial resistance, and therefore also on the sensors resistive dynamic range. The importance of the sensor geometry is believed to be due to the amount of solvent from the ink interacting with the coating of the paper substrate, which in turn enables the diffusion of salts from the paper coating into the ink and thus affecting the silver ink.
Microelectronics Journal | 2011
Henrik Andersson; Alexandru Rusu; Anatoliy Manuilskiy; Stefan Haller; Suat Ayöz; Hans-Erik Nilsson
This work describes the development of inkjet printed, low-cost memory cards, and complementary pair of memory card reader and card reader/programmer for PCs. This constitutes a complete system that can be used for various applications. The memory cards are manufactured by inkjet printing nano-silver ink on photo paper substrate. The printed memory structures have an initial high resistance that can later be programmed to specific values representing data on the cards, the so called Write Once Read Many (WORM) memories. The memory card reader measures the resistance values of the memory cells and reads it back to the computer by USB connection. Using multiple resistance levels that represent different states it is possible to have a larger number of selectable combinations with fewer physical bits compared to binary coding. This somewhat counters one of the limitations of resistive memory technology that basically each cell needs one physical contact. The number of possible states is related to the resolution of the reader and the stability of the WORM memory.
IEEE Transactions on Components, Packaging and Manufacturing Technology | 2012
Henrik Andersson; Cecilia Lidenmark; Thomashlund Ohlund; Jonasrtegren Ortegren; Anatoliy Manuilskiy; Sven Forsberg; Hans-Erik Nilsson
Different types of the commercial surface treatment InkAid have been evaluated as a surface treatment to enhance print quality of silver nano-particle ink structures printed on polyimide and polyethene substrates. Originally these coatings were designed to be applied on substrates for graphical ink jet printing. On the coated polyimide and polyethene substrates lines of different widths have been printed using a Dimatix materials printer together with silver nano-particle ink manufactured by Advanced Nano-Products. The prints have then been evaluated in terms of print quality and resistivity before and after sintering. The results show that the application of these coatings can improve the print quality considerably, making it possible to print lines with a good definition, which is not otherwise possible with this type of ink on this substrate types. It has been found that the semi-gloss coating provides the best results, both in terms of print quality as well as the lowest resistivity. The resistivity on polyethene is 3.5×10-7 Ωm at best when sintered at 150°C and for polyimide 8.9×10-8 Ωm sintered at 200°C. This corresponds to a conductivity of about 4.5% and 18% of bulk silver, respectively. It can be concluded that applying such polyvinylpyrrolidone (PVP)-based coatings to polyethene and polyimide will increase the print quality quite substantially, making it possible to print patterns with requirements of smaller line widths and more details than what is possible without coating.
IEEE Sensors Journal | 2014
Anzar Alam; Mattias O'Nils; Anatoliy Manuilskiy; Jan Thim; Christina Westerlind
A new prototype device has been developed based on a laser triangulation principle to measure online surface topography in the paper and paperboard industries. It characterizes the surface in a wide spatial scale of topography from 0.09-10 mm. The prototypes technique projects a narrow lineof-light perpendicularly onto the moving paper-Web surface and scattered reflected light is collected at a low angle, low specular, and reduced coherent length onto the CCD sensors synchronized with the laser sources. The scattering phenomenon determines surface deviations in the z-direction. The full-width, at half-maximum of a laser line in cross section is sensitive in computation of the surface topography. The signal processing aspect of the image processing, for example, threshold and filtering algorithms are also sensitive in estimating the accurate surface features. Moreover, improper light illumination, intensity, reflection, occlusion, surface motion, and noise in the imaging sensor, and so forth, all contribute to deteriorate the measurements. Optical techniques measure the surface indirectly and, in general, an evaluation of the performance and the limitations of the technique are both essential and challenging. The paper describes the accuracy, uncertainty, and limitations of the developed technique in the raw profiles and in terms of the rms roughness. The achieved image subpixel resolution is 0.01 times a pixel. Statistically estimated uncertainty (2σ) in the laboratory environment was found 0.05 μm for a smooth sample, which provides a 95% confidence level in the rms roughness results. The depth of field of the prototype is ~2.4 mm.
IEEE Sensors Journal | 2014
Anzar Alam; Anatoliy Manuilskiy; Mattias O'Nils; Jan Thim
Real time surface topography measurement in the paper and paperboard industries is a challenging research field. The existing online techniques measure only a small area of paper surface and estimate topographical irregularities in a narrow scale as a single predictor. Considering the limitations and complications in measuring the surface at high speed, a laser line triangulation technique is explored to measure surface topography in a wide scale. The developed technique is new for the paper and paperboard application that scans a line onto the paper-web surface up to 210 mm in length in the cross machine direction. The combination of a narrow laser linewidth imaging, a subpixel resolution, and the selection of a unique measurement location has made it possible to measure roughness and simultaneously characterize paper surface topography from 0.1 to 30 mm spatial wavelength. This spatial range covers wide scale surface properties such as roughness, cockling, and waviness. The technique clearly distinguishes and characterizes the surface of newspaper, and lightweight coated, coated, and uncoated paperboard in real time during the paper manufacturing process. The system temporal noise for the average roughness is estimated as 37 dB. The signal to noise ratio found is from 5.4 to 8.1 in the short spatial wavelength up to 1 mm, whereas it is more than 75 in the long spatial wavelength from 5 to 10 mm.