Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anda Huna is active.

Publication


Featured researches published by Anda Huna.


Experimental Cell Research | 2010

Up-regulation of the embryonic self-renewal network through reversible polyploidy in irradiated p53-mutant tumour cells

Kristine Salmina; Eriks Jankevics; Anda Huna; Dmitry Perminov; Ilze Radovica; Tetyana Klymenko; Andrei Ivanov; Elina Jascenko; Harry Scherthan; Mark S. Cragg; Jekaterina Erenpreisa

We have previously documented that transient polyploidy is a potential cell survival strategy underlying the clonogenic re-growth of tumour cells after genotoxic treatment. In an attempt to better define this mechanism, we recently documented the key role of meiotic genes in regulating the DNA repair and return of the endopolyploid tumour cells (ETC) to diploidy through reduction divisions after irradiation. Here, we studied the role of the pluripotency and self-renewal stem cell genes NANOG, OCT4 and SOX2 in this polyploidy-dependent survival mechanism. In irradiation-resistant p53-mutated lymphoma cell-lines (Namalwa and WI-L2-NS) but not sensitive p53 wild-type counterparts (TK6), low background expression of OCT4 and NANOG was up-regulated by ionising radiation with protein accumulation evident in ETC as detected by OCT4/DNA flow cytometry and immunofluorescence (IF). IF analysis also showed that the ETC generate PML bodies that appear to concentrate OCT4, NANOG and SOX2 proteins, which extend into complex nuclear networks. These polyploid tumour cells resist apoptosis, overcome cellular senescence and undergo bi- and multi-polar divisions transmitting the up-regulated OCT4, NANOG and SOX2 self-renewal cassette to their descendents. Altogether, our observations indicate that irradiation-induced ETC up-regulate key components of germ-line cells, which potentially facilitate survival and propagation of the tumour cell population.


Cell Biology International | 2011

Polyploid tumour cells elicit paradiploid progeny through depolyploidizing divisions and regulated autophagic degradation

Jekaterina Erenpreisa; Kristine Salmina; Anda Huna; Elizabeth A. Kosmacek; Mark S. Cragg; Fiorenza Ianzini; Alim P. Anisimov

‘Neosis’ describes the process whereby p53 function‐deficient tumour cells undergo self‐renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self‐renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self‐renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that ‘neotic’ ETC resulting from genotoxically damaged p53 function‐deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated ‘viable’ subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.


Cell Cycle | 2013

DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells

Thomas R. Jackson; Kristine Salmina; Anda Huna; Inna Inashkina; Eriks Jankevics; Una Riekstina; Zane Kalnina; Andrey Ivanov; Paul A. Townsend; Mark S. Cragg; Jekaterina Erenpreisa

Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G2M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fraction. Phosphorylated CHK2 and RAD51/γH2AX-positive nuclear foci, overexpression of AURORA B kinase and moderate macroautophagy were evident. Upon release from G2M arrest, cells with repaired DNA entered mitoses, while the cells with persisting DNA damage remained at this checkpoint or underwent mitotic slippage and gradually senesced. Reduction of TP53 using sh- or si-RNA prevented the upregulation of OCT4A and P21CIP1 and increased DNA damage. Subsequently, mitoses, micronucleation and senescence were all enhanced after TP53 reduction with senescence confirmed by upregulation of CDKN2A/P16INK4A and increased sa-β-galactosidase positivity. Those mitoses enhanced by TP53 silencing were shown to be multicentrosomal and multi-polar, containing fragmented and highly deranged chromosomes, indicating a loss of genome integrity. Together, these data suggest that TP53-dependent coupling of self-renewal and senescence pathways through the DNA damage checkpoint provides a mechanism for how embryonal stem cell-like EC cells safeguard DNA integrity, genome stability and ultimately the fidelity of self-renewal.


Autophagy | 2012

Macroautophagy-aided elimination of chromatin

Jekaterina Erenpreisa; Anda Huna; Kristine Salmina; Thomas R. Jackson; Mark S. Cragg

How tumor cells process damaged or unwanted DNA is a matter of much interest. Recently, Rello-Varona et al. (Cell Cycle 2012; 11:170–76) reported the involvement of macroautophagy (hereon autophagy) in the elimination of micronuclei (MN) from osteosarcoma cells. Prior to that, diminution of whole nuclei from multinucleated TP53-mutant tumor cells was described. Here, we discuss these two kinds of chromatin autophagy evoked after genotoxic stress in the context of the various biological processes involved: (1) endopolyploidy and the ploidy cycle; (2) the timing of DNA synthesis; (3) DNA repair; (4) chromatin:nuclear envelope interactions; and (5) cytoplasmic autophagy. We suggest that whereas some MN can be reunited with the main nucleus (through interactions with envelope-limited chromatin sheets) and participate in DNA repair, failure of repair serves as a signal for the chromatin autophagy of MN. In turn, autophagy of whole sub-nuclei in multi-nucleated cells appears to favor de-polyploidization, mitigation of aneuploidy with its adverse effects, thereby promoting the survival fitness of descendents and treatment resistance. Thus, both kinds of chromatin autophagy provide tumor cells with the opportunity to repair DNA, sort and resort chromatin, reduce DNA content, and enhance survival.


Journal of Aging Research | 2011

Self-Renewal Signalling in Presenescent Tetraploid IMR90 Cells

Anda Huna; Kristine Salmina; Elina Jascenko; Gunars Duburs; Inna Inashkina; Jekaterina Erenpreisa

Endopolyploidy and genomic instability are shared features of both stress-induced cellular senescence and malignant growth. Here, we examined these facets in the widely used normal human fibroblast model of senescence, IMR90. At the presenescence stage, a small (2–7%) proportion of cells overcome the 4n-G1 checkpoint, simultaneously inducing self-renewal (NANOG-positivity), the DNA damage response (DDR; γ-H2AX-positive foci), and senescence (p16inka4a- and p21CIP1-positivity) signalling, some cells reach octoploid DNA content and divide. All of these markers initially appear and partially colocalise in the perinucleolar compartment. Further, with development of senescence and accumulation of p16inka4a and p21CIP1, NANOG is downregulated in most cells. The cells increasingly arrest in the 4n-G1 fraction, completely halt divisions and ultimately degenerate. A positive link between DDR, self-renewal, and senescence signalling is initiated in the cells overcoming the tetraploidy barrier, indicating that cellular and molecular context of induced tetraploidy during this period of presenescence is favourable for carcinogenesis.


Cell Cycle | 2015

Role of stress-activated OCT4A in the cell fate decisions of embryonal carcinoma cells treated with etoposide

Anda Huna; Kristine Salmina; Jekaterina Erenpreisa; Alejandro Vazquez-Martin; Jekabs Krigerts; Inna Inashkina; Gerashchenko Bi; Paul A. Townsend; Mark S. Cragg; Thomas R. Jackson

Tumor cellular senescence induced by genotoxic treatments has recently been found to be paradoxically linked to the induction of “stemness.” This observation is critical as it directly impinges upon the response of tumors to current chemo-radio-therapy treatment regimens. Previously, we showed that following etoposide (ETO) treatment embryonal carcinoma PA-1 cells undergo a p53-dependent upregulation of OCT4A and p21Cip1 (governing self-renewal and regulating cell cycle inhibition and senescence, respectively). Here we report further detail on the relationship between these and other critical cell-fate regulators. PA-1 cells treated with ETO display highly heterogeneous increases in OCT4A and p21Cip1 indicative of dis-adaptation catastrophe. Silencing OCT4A suppresses p21Cip1, changes cell cycle regulation and subsequently suppresses terminal senescence; p21Cip1-silencing did not affect OCT4A expression or cellular phenotype. SOX2 and NANOG expression did not change following ETO treatment suggesting a dissociation of OCT4A from its pluripotency function. Instead, ETO-induced OCT4A was concomitant with activation of AMPK, a key component of metabolic stress and autophagy regulation. p16ink4a, the inducer of terminal senescence, underwent autophagic sequestration in the cytoplasm of ETO-treated cells, allowing alternative cell fates. Accordingly, failure of autophagy was accompanied by an accumulation of p16ink4a, nuclear disintegration, and loss of cell recovery. Together, these findings imply that OCT4A induction following DNA damage in PA-1 cells, performs a cell stress, rather than self-renewal, function by moderating the expression of p21Cip1, which alongside AMPK helps to then regulate autophagy. Moreover, this data indicates that exhaustion of autophagy, through persistent DNA damage, is the cause of terminal cellular senescence.


Oncotarget | 2016

Somatic polyploidy is associated with the upregulation of c-MYC interacting genes and EMT-like signature

Alejandro Vazquez-Martin; Olga V. Anatskaya; Jekaterina Erenpreisa; Sui Huang; Kristine Salmina; Inna Inashkina; Anda Huna; N. N. Nikolsky; Alexander E. Vinogradov

The dependence of cancer on overexpressed c-MYC and its predisposition for polyploidy represents a double puzzle. We address this conundrum by cross-species transcription analysis of c-MYC interacting genes in polyploid vs. diploid tissues and cells, including human vs. mouse heart, mouse vs. human liver and purified 4n vs. 2n mouse decidua cells. Gene-by-gene transcriptome comparison and principal component analysis indicated that c-MYC interactants are significantly overrepresented among ploidy-associated genes. Protein interaction networks and gene module analysis revealed that the most upregulated genes relate to growth, stress response, proliferation, stemness and unicellularity, as well as to the pathways of cancer supported by MAPK and RAS coordinated pathways. A surprising feature was the up-regulation of epithelial-mesenchymal transition (EMT) modules embodied by the N-cadherin pathway and EMT regulators from SNAIL and TWIST families. Metabolic pathway analysis also revealed the EMT-linked features, such as global proteome remodeling, oxidative stress, DNA repair and Warburg-like energy metabolism. Genes associated with apoptosis, immunity, energy demand and tumour suppression were mostly down-regulated. Noteworthy, despite the association between polyploidy and ample features of cancer, polyploidy does not trigger it. Possibly it occurs because normal polyploidy does not go that far in embryonalisation and linked genome destabilisation. In general, the analysis of polyploid transcriptome explained the evolutionary relation of c-MYC and polyploidy to cancer.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2013

Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells.

Jutta Schwarz-Finsterle; Harry Scherthan; Anda Huna; Paula González; Patrick Mueller; Eberhard Schmitt; Jekaterina Erenpreisa; Michael Hausmann

The exposure of tumour cells to high doses of ionizing radiation can induce endopolyploidization as an escape route from cell death. This strategy generally results in mitotic catastrophe during the first few days after irradiation. However, some cells escape mitotic catastrophe, polyploidize and attempt to undergo genome reduction and de-polyploidization in order to create new, viable para-diploid tumour cell sub-clones. In search for the consequences of ionizing radiation induced endopolyploidization, genome and chromosome architecture in nuclei of polyploid tumour cells, and sub-nuclei after division of bi- or multi-nucleated cells were investigated during 7 days following irradiation. Polyploidization was induced in p53-function deficient HeLa cells by exposure to 10Gy of X-irradiation. Chromosome territories #1, #4, #12 and centromeres of chromosomes #6, #10, #X were labelled by FISH and analysed for chromosome numbers, volumes and spatial distribution during 7 days post irradiation. The numbers of interphase chromosome territories or centromeres, respectively, the positions of the most peripherally and centrally located chromosome territories, and the territory volumes were compared to non-irradiated controls over this time course. Nuclei with three copies of several chromosomes (#1, #6, #10, #12, #X) were found in the irradiated as well as non-irradiated specimens. From day 2 to day 5 post irradiation, chromosome territories (#1, #4, #12) shifted towards the nuclear periphery and their volumes increased 16- to 25-fold. Consequently, chromosome territories returned towards the nuclear centre during day 6 and 7 post irradiation. In comparison to non-irradiated cells (∼500μm(3)), the nuclear volume of irradiated cells was increased 8-fold (to ∼4000μm(3)) at day 7 post irradiation. Additionally, smaller cell nuclei with an average volume of about ∼255μm(3) were detected on day 7. The data suggest a radiation-induced generation of large intra-nuclear chromosome territories and their repositioning prior to genome reduction.


Histochemistry and Cell Biology | 2016

Erratum to: Disentangling the aneuploidy and senescence paradoxes: a study of triploid breast cancers non-responsive to neoadjuvant therapy.

Gerashchenko Bi; Kristine Salmina; J. Eglitis; Anda Huna; V. Grjunberga; Jekaterina Erenpreisa

Most solid tumours are pre-disposed to high degrees of aneuploidy (an abnormal numbers of chromosomes) (Weaver and Cleveland 2006; Gordon et al. 2012) which correlates with resistance to anti-cancer treatment and poor prognosis (Swanton et al. 2009). While this suggests a positive correlation between aneuploidy and cancer development, confounding observations in vitro indicate that aneuploidy causes cell stress and suppresses the proliferative potential of cells. Why then do tumours tolerate and evolve aneuploidy? This conundrum is called the “aneuploidy paradox” (Sheltzer and Amon 2011). It appears therefore that aneuploidy can provide a growth advantage and facilitate cellular transformation (Duesberg et al. 2000; Holland and Cleveland 2012). Another puzzle, emerging more recently, is associated with chemo and radiotherapy leading to so-called accelerated cellular senescence in tumours (Roninson et al. 2001). By definition, cellular senescence inhibits cell proliferation but paradoxical evidence from clinical material revealed that, likewise aneuploidy, it is also predictive of poor prognosis of treatment outcome. This association has been reported for non-small cell lung cancer (Wu et al. 2012) and breast Abstract Aneuploid cells should have a reduced proliferation rate due to difficulty in proceeding through mitosis. However, contrary to this, high aneuploidy is associated with aggressive tumour growth and poor survival prognosis, in particular in triploid breast cancer. A further paradox revolves around the observation that, while cell senescence should inhibit proliferation, the senescence marker p16INK4a correlates with poor treatment outcome in patients with a very aggressive triple-negative breast carcinoma (TNBC). In this study, we aim to pour light on the possible relationship of these conundrums with polyploidy of tumour cells. We performed detailed analysis of DNA histogram profiles in diagnostic core biopsies of 30 cases of operable breast cancer and found that near triploidy in TNBC and other forms correlated with weak or no response to neoadjuvant chemotherapy (NAC) as scored by Miller– Payne index. Polyploid cells in operation samples from tumours that were non-responsive to NAC treatment were Ki67 and CD44 positive. In addition, polyploid cells were positive for markers of embryonic stemness (OCT4, SOX2, NANOG) and senescence (p16INK4a). The relationship patterns between p16INK4a and NANOG were heterogeneous, with predominantly mutually exclusive expression but also synergistic and intermediate variants in the same samples. We conclude that the aneuploidy and senescence


Nucleus | 2017

Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells

Kristine Salmina; Anda Huna; Inna Inashkina; Alexander Belyayev; Jekabs Krigerts; Ladislava Pastova; Alejandro Vazquez-Martin; Jekaterina Erenpreisa

ABSTRACT The role of the nucleolus and autophagy in maintenance of nuclear integrity is poorly understood. In addition, the mechanisms of nuclear destruction in cancer cells senesced after conventional chemotherapy are unclear. In an attempt to elucidate these issues, we studied teratocarcinoma PA1 cells treated with Etoposide (ETO), focusing on the nucleolus. Following treatment, most cells enter G2 arrest, display persistent DNA damage and activate p53, senescence, and macroautophagy markers. 2–5 µm sized nucleolar aggresomes (NoA) containing fibrillarin (FIB) and damaged rDNA, colocalized with ubiquitin, pAMPK, and LC3-II emerge, accompanied by heterochromatin fragments, when translocated perinuclearly. Microscopic counts following application of specific inhibitors revealed that formation of FIB-NoA is dependent on deficiency of the ubiquitin proteasome system coupled to functional autophagy. In contrast, the accompanying NoAs release of pericentric heterochromatin, which exceeds their frequency, is favored by debilitation of autophagic flux. Potential survivors release NoA in the cytoplasm during rare mitoses, while exit of pericentric fragments often depleted of H3K9Me3, with or without encompassing by NoA, occurs through the nucleolar protrusions and defects of the nuclear envelope. Foci of LC3-II are accumulated in the nucleoli undergoing cessation of rDNA transcription. As an origin of heterochromatin fragmentation, the unscheduled DNA synthesis and circular DNAs were found in the perinucleolar heterochromatin shell, along with activation and retrotransposition of ALU elements, colocalized with 45S rDNA in NoAs. The data indicate coordination of the basic nucleolar function with autophagy regulation in maintenance of the integrity of the nucleolus associated domains secured by inactivity of retrotransposons.

Collaboration


Dive into the Anda Huna's collaboration.

Top Co-Authors

Avatar

Jekaterina Erenpreisa

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar

Kristine Salmina

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar

Mark S. Cragg

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inna Inashkina

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar

Alejandro Vazquez-Martin

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar

Eriks Jankevics

Latvian Biomedical Research and Study centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerashchenko Bi

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

I. Innashkina

Latvian Biomedical Research and Study centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge