Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ander Estella-Hermoso de Mendoza is active.

Publication


Featured researches published by Ander Estella-Hermoso de Mendoza.


Clinical Cancer Research | 2010

In vitro and In vivo Selective Antitumor Activity of Edelfosine against Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Involving Lipid Rafts

Faustino Mollinedo; Janis de la Iglesia-Vicente; Consuelo Gajate; Ander Estella-Hermoso de Mendoza; Janny A. Villa-Pulgarin; Mercè de Frias; Gaël Roué; Joan Gil; Dolors Colomer; Miguel Angel Campanero; María J. Blanco-Prieto

Purpose: Mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL) remain B-cell malignancies with limited therapeutic options. The present study investigates the in vitro and in vivo effect of the phospholipid ether edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) in MCL and CLL. Experimental Design: Several cell lines, patient-derived tumor cells, and xenografts in severe combined immunodeficient mice were used to examine the anti-MCL and anti-CLL activity of edelfosine. Furthermore, we analyzed the mechanism of action and drug biodistribution of edelfosine in MCL and CLL tumor-bearing severe combined immunodeficient mice. Results: Here, we have found that the phospholipid ether edelfosine was the most potent alkyl-lysophospholipid analogue in killing MCL and CLL cells, including patient-derived primary cells, while sparing normal resting lymphocytes. Alkyl-lysophospholipid analogues ranked edelfosine > perifosine ≫ erucylphosphocholine ≥ miltefosine in their capacity to elicit apoptosis in MCL and CLL cells. Edelfosine induced coclustering of Fas/CD95 death receptor and rafts in MCL and CLL cells. Edelfosine was taken up by malignant cells, whereas normal resting lymphocytes hardly incorporated the drug. Raft disruption by cholesterol depletion inhibited drug uptake, Fas/CD95 clustering, and edelfosine-induced apoptosis. Edelfosine oral administration showed a potent in vivo anticancer activity in MCL and CLL xenograft mouse models, and the drug accumulated dramatically and preferentially in the tumor. Conclusions: Our data indicate that edelfosine accumulates and kills MCL and CLL cells in a rather selective way, and set coclustering of Fas/CD95 and lipid rafts as a new framework in MCL and CLL therapy. Our data support a selective antitumor action of edelfosine. Clin Cancer Res; 16(7); 2046–54. ©2010 AACR.


Journal of Controlled Release | 2011

In vitro and in vivo efficacy of edelfosine-loaded lipid nanoparticles against glioma.

Ander Estella-Hermoso de Mendoza; Véronique Préat; Faustino Mollinedo; María J. Blanco-Prieto

Edelfosine is the prototype molecule of a family of anticancer drugs collectively known as synthetic alkyl-lysophospholipids. This drug holds promise as a selective antitumor agent, and a number of preclinical assays are in progress. In this study, we observe the accumulation of edelfosine in brain tissue after its oral administration in Compritol® and Precirol® lipid nanoparticles (LN). The high accumulation of edelfosine in brain was due to the inhibition of P-glycoprotein by Tween® 80, as verified using a P-glycoprotein drug interaction assay. Moreover, these LN were tested in vitro against the C6 glioma cell line, which was later employed to establish an in vivo xenograft mouse model of glioma. In vitro studies revealed that edelfosine-loaded LN induced an antiproliferative effect in C6 glioma cell line. In addition, in vivo oral administration of drug-loaded LN in NMRI nude mice bearing a C6 glioma xenograft tumor induced a highly significant reduction in tumor growth (p<0.01) 14days after the beginning of the treatment. Our results showed that Tween® 80 coated Compritol® and Precirol® LN can effectively inhibit the growth of C6 glioma cells in vitro and suggest that edelfosine-loaded LN represent an attractive option for the enhancement of antitumor activity on brain tumors in vivo.


Clinical Cancer Research | 2009

Antitumor Alkyl Ether Lipid Edelfosine: Tissue Distribution and Pharmacokinetic Behavior in Healthy and Tumor-Bearing Immunosuppressed Mice

Ander Estella-Hermoso de Mendoza; Miguel Angel Campanero; Janis de la Iglesia-Vicente; Consuelo Gajate; Faustino Mollinedo; María J. Blanco-Prieto

Purpose: The present study investigates and compares the dose-dependent pharmacokinetics and oral bioavailability of edelfosine in healthy, immunodeficient, and tumor-bearing immunosuppressed mouse animal models, as well as edelfosine uptake and apoptotic activity in the Z-138 mantle cell lymphoma (MCL) cell line. Experimental design: Biodistribution study of edelfosine was done in both BALB/c and severe combined immune deficiency (SCID) mice, and then the in vivo behavior of the drug after i.v. and oral administration was monitored. Results: We found that edelfosine is incorporated and induces apoptosis in the Z-138 human mantle cell lymphoma cell line, whereas normal resting peripheral blood human lymphocytes were not affected. In vivo biodistribution studies revealed that accumulation of edelfosine in the tumor of a MCL-bearing mouse animal model was considerably higher (P < 0.01) than in the other organs analyzed. Besides, no statistical differences were observed between the pharmacokinetic parameters of BALB/c and SCID mice. Edelfosine presented slow elimination and high distribution to tissues. Bioavailability for a single oral dose of edelfosine was <10%, but a multiple-dose oral administration increased this value up to 64%. Conclusion: Our results show that edelfosine is widely scattered across different organs, but it is preferentially internalized by the tumor both in vitro and in vivo. Our data, together with the apoptotic action of the drug on cancer cells, support a rather selective action of edelfosine in cancer treatment, and that multiple oral administration is required to increase oral bioavailability.


Expert Opinion on Drug Delivery | 2012

Lipid nanoparticles for cancer therapy: state of the art and future prospects

Beatriz Lasa-Saracíbar; Ander Estella-Hermoso de Mendoza; Melissa Guada; Carmen Dios-Vieitez; María J. Blanco-Prieto

Introduction: Cancer is a leading cause of death worldwide and it is estimated that deaths from this disease will rise to over 11 million in 2030. Most cases of cancer can be cured with surgery, radiotherapy or chemotherapy if they are detected at an early stage. However, current cancer therapies are commonly associated with undesirable side effects, as most chemotherapy treatments are cytotoxic and present poor tumor targeting. Areas covered: Lipid nanoparticles (LN) are one of the most promising options in this field. LN are made up of biodegradable generally recognized as safe (GRAS) lipids, their formulation includes different techniques, and most are easily scalable to industrial manufacture. LN overcome the limitations imposed by the need for intravenous administration, as they are mainly absorbed via the lymphatic system when they are administered orally, which improves drug bioavailability. Furthermore, depending on their composition, LN present the ability to cross the blood–brain barrier, thus opening up the possibility of targeting brain tumors. Expert opinion: The drawbacks of chemotherapeutic agents make it necessary to invest in research to find safer and more effective therapies. Nanotechnology has opened the door to new therapeutic options through the design of formulations that include a wide range of materials and formulations at the nanometer range, which improve drug efficacy through direct or indirect tumor targeting, increased bioavailability and diminished toxicity.


International Journal of Pharmaceutics | 2013

Efficacy of edelfosine lipid nanoparticles in breast cancer cells.

María Ángela Aznar; Beatriz Lasa-Saracíbar; Ander Estella-Hermoso de Mendoza; María J. Blanco-Prieto

Breast cancer is a heterogeneous group of neoplasms predominantly originating in the terminal duct lobular units. It represents the leading cause of cancer death in women and the survival frequencies for patients at advanced stages of the disease remain low. New treatment options need to be researched to improve these rates. The anti-tumor ether lipid edelfosine (ET) is the prototype of a novel generation of promising anticancer drugs. However, it presents several drawbacks for its use in cancer therapy, including gastrointestinal and hemolytic toxicity and low oral bioavailability. To overcome these obstacles, ET was encapsulated in Precirol ATO 5 lipid nanoparticles (ET-LN), and its anti-tumor potential was in vitro tested in breast cancer. The formulated ET-LN were more effective in inhibiting cell proliferation and notably decreased cell viability, showing that the cytotoxic effect of ET was considerably enhanced when ET was encapsulated. In addition, ET and ET-LN were able to promote cell cycle arrest at G1 phase. Moreover, although both treatments provoked an apoptotic effect in a time-dependent manner, such anti-tumor effects were noticeably improved with ET-LN treatment. Therefore, our results indicate that encapsulating ET in LN played an essential role in improving the efficacy of the drug.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

Complete inhibition of extranodal dissemination of lymphoma by edelfosine-loaded lipid nanoparticles

Ander Estella-Hermoso de Mendoza; Miguel Angel Campanero; Hugo Lana; Janny A. Villa-Pulgarin; Janis de la Iglesia-Vicente; Faustino Mollinedo; María J. Blanco-Prieto

BACKGROUND Lipid nanoparticles (LNs) made of synthetic lipids Compritol(®) 888 ATO and Precirol(®) ATO 5 were developed with an average size of 110.4 ± 2.1 and 103.1 ± 2.9 nm, and an encapsulation efficiency above 85% for both type of lipids. These LNs decrease the hemolytic toxicity of the drug by 90%. MATERIALS & METHODS Pharmacokinetic and biodistribution profiles of the drug were studied after intravenous and oral administration of edelfosine-containing LNs. RESULTS This provided an increase in relative oral bioavailability of 1500% after a single oral administration of drug-loaded LNs, maintaining edelfosine plasma levels over 7 days in contrast to a single oral administration of edelfosine solution, which presented a relative oral bioavailability of 10%. Moreover, edelfosine-loaded LNs showed a high accumulation of the drug in lymph nodes and resulted in slower tumor growth than the free drug in a murine lymphoma xenograft model, as well as potent extranodal dissemination inhibition.


Current Medicinal Chemistry | 2014

Diagnostic and therapeutic uses of nanomaterials in the brain.

Elisa Garbayo; Ander Estella-Hermoso de Mendoza; María J. Blanco-Prieto

Nanomedicine has recently emerged as an exciting tool able to improve the early diagnosis and treatment of a variety of intractable or age-related brain disorders. The most relevant properties of nanomaterials are that they can be engineered to cross the blood brain barrier, to target specific cells and molecules and to act as vehicles for drugs. Potentially beneficial properties of nanotherapeutics derived from its unique characteristics include improved efficacy, safety, sensitivity and personalization compared to conventional medicines. In this review, recent advances in available nanostructures and nanomaterials for brain applications will be described. Then, the latest applications of nanotechnology for the diagnosis and treatment of neurological disorders, in particular brain tumors and neurodegenerative diseases, will be reviewed. Recent investigations of the neurotoxicity of the nanomaterial both in vitro and in vivo will be summarized. Finally, the ongoing challenges that have to be meet if new nanomedical products are to be put on the market will be discussed and some future directions will be outlined.


Nature Communications | 2017

Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.

Edurne San José-Enériz; Xabier Agirre; Obdulia Rabal; Amaia Vilas-Zornoza; Juan A. Sánchez-Arias; Estíbaliz Miranda; Ana Ugarte; Sergio Roa; Bruno Paiva; Ander Estella-Hermoso de Mendoza; Rosa Alvarez; Noelia Casares; Victor Segura; José I. Martín-Subero; François-Xavier Ogi; Pierre Soule; Clara M. Santiveri; Ramón Campos-Olivas; Giancarlo Castellano; Maite Garcia Fernandez de Barrena; Juan R. Rodriguez-Madoz; María José García-Barchino; Juan José Lasarte; Matías A. Avila; Jose A. Martinez-Climent; Julen Oyarzabal; Felipe Prosper

The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favoured development of epigenetic drugs. In this study, we design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of haematological neoplasia (acute myeloid leukaemia-AML, acute lymphoblastic leukaemia-ALL and diffuse large B-cell lymphoma-DLBCL) with the lead compound CM-272, inhibits cell proliferation and promotes apoptosis, inducing interferon-stimulated genes and immunogenic cell death. CM-272 significantly prolongs survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series as a promising therapeutic tool for unmet needs in haematological tumours.


Cancer Letters | 2013

Edelfosine lipid nanosystems overcome drug resistance in leukemic cell lines

Beatriz Lasa-Saracíbar; Ander Estella-Hermoso de Mendoza; Faustino Mollinedo; María D. Odero; María J. Blanco-Prieto

Although current therapies have improved leukemia survival rates, adverse drug effects and relapse are frequent. Encapsulation of edelfosine (ET) in lipid nanoparticles (LNs) improves its oral bioavailability and decreases its toxicity. Here we evaluated the efficacy of ET-LN in myeloid leukemia cell lines. Drug-loaded LN were as effective as free ET in sensitive leukemia cell lines. Moreover, the encapsulated drug overcame the resistance of the K562 cell line to the drug. LN containing ET might be used as a promising drug delivery system in leukemia due to their capacity to overcome the in vivo pitfalls of the free drug and their efficacy in vitro in leukemia cell lines.


European Journal of Pharmaceutics and Biopharmaceutics | 2008

Lipid nanoparticles for alkyl lysophospholipid edelfosine encapsulation: Development and in vitro characterization

Ander Estella-Hermoso de Mendoza; Marta Rayo; Faustino Mollinedo; María J. Blanco-Prieto

Collaboration


Dive into the Ander Estella-Hermoso de Mendoza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faustino Mollinedo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge