Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anderly C. Chueh is active.

Publication


Featured researches published by Anderly C. Chueh.


American Journal of Human Genetics | 2008

Neocentromeres: New Insights into Centromere Structure, Disease Development, and Karyotype Evolution

Owen J. Marshall; Anderly C. Chueh; Lee H. Wong; K.H. Andy Choo

Since the discovery of the first human neocentromere in 1993, these spontaneous, ectopic centromeres have been shown to be an astonishing example of epigenetic change within the genome. Recent research has focused on the role of neocentromeres in evolution and speciation, as well as in disease development and the understanding of the organization and epigenetic maintenance of the centromere. Here, we review recent progress in these areas of research and the significant insights gained.


PLOS Genetics | 2009

LINE Retrotransposon RNA Is an Essential Structural and Functional Epigenetic Component of a Core Neocentromeric Chromatin

Anderly C. Chueh; Emma L. Northrop; Kate H. Brettingham-Moore; K.H. Andy Choo; Lee H. Wong

We have previously identified and characterized the phenomenon of ectopic human centromeres, known as neocentromeres. Human neocentromeres form epigenetically at euchromatic chromosomal sites and are structurally and functionally similar to normal human centromeres. Recent studies have indicated that neocentromere formation provides a major mechanism for centromere repositioning, karyotype evolution, and speciation. Using a marker chromosome mardel(10) containing a neocentromere formed at the normal chromosomal 10q25 region, we have previously mapped a 330-kb CENP-A–binding domain and described an increased prevalence of L1 retrotransposons in the underlying DNA sequences of the CENP-A–binding clusters. Here, we investigated the potential role of the L1 retrotransposons in the regulation of neocentromere activity. Determination of the transcriptional activity of a panel of full-length L1s (FL-L1s) across a 6-Mb region spanning the 10q25 neocentromere chromatin identified one of the FL-L1 retrotransposons, designated FL-L1b and residing centrally within the CENP-A–binding clusters, to be transcriptionally active. We demonstrated the direct incorporation of the FL-L1b RNA transcripts into the CENP-A–associated chromatin. RNAi-mediated knockdown of the FL-L1b RNA transcripts led to a reduction in CENP-A binding and an impaired mitotic function of the 10q25 neocentromere. These results indicate that LINE retrotransposon RNA is a previously undescribed essential structural and functional component of the neocentromeric chromatin and that retrotransposable elements may serve as a critical epigenetic determinant in the chromatin remodelling events leading to neocentromere formation.


Cancer Research | 2010

Apoptotic Sensitivity of Colon Cancer Cells to Histone Deacetylase Inhibitors Is Mediated by an Sp1/Sp3-Activated Transcriptional Program Involving Immediate-Early Gene Induction

Andrew J. Wilson; Anderly C. Chueh; Lars Tögel; Georgia A. Corner; Naseem Ahmed; Sanjay Goel; Do Sun Byun; Shannon Nasser; Michele A. Houston; Minaxi Jhawer; Helena J.M. Smartt; Lucas B. Murray; Courtney Nicholas; Barbara G. Heerdt; Diego Arango; Leonard H. Augenlicht; John M. Mariadason

Histone deacetylase inhibitors (HDACi) induce growth arrest and apoptosis in colon cancer cells and are being considered for colon cancer therapy. The underlying mechanism of action of these effects is poorly defined with both transcription-dependent and -independent mechanisms implicated. We screened a panel of 30 colon cancer cell lines for sensitivity to HDACi-induced apoptosis and correlated the differences with gene expression patterns induced by HDACi in the five most sensitive and resistant lines. A robust and reproducible transcriptional response involving coordinate induction of multiple immediate-early (fos, jun, egr1, egr3, atf3, arc, nr4a1) and stress response genes (Ndrg4, Mt1B, Mt1E, Mt1F, Mt1H) was selectively induced in HDACi sensitive cells. Notably, a significant percentage of these genes were basally repressed in colon tumors. Bioinformatics analysis revealed that the promoter regions of the HDACi-induced genes were enriched for KLF4/Sp1/Sp3 transcription factor binding sites. Altering KLF4 levels failed to modulate apoptosis or transcriptional responses to HDACi treatment. In contrast, HDACi preferentially stimulated the activity of Spl/Sp3 and blocking their action attenuated both the transcriptional and apoptotic responses to HDACi treatment. Our findings link HDACi-induced apoptosis to activation of a Spl/Sp3-mediated response that involves derepression of a transcriptional network basally repressed in colon cancer.


Antioxidants & Redox Signaling | 2014

Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells

Anderly C. Chueh; Janson W. Tse; Lars Tögel; John M. Mariadason

SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.


Molecular Cancer Therapeutics | 2016

Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells.

Lars Tögel; Rebecca Nightingale; Anderly C. Chueh; Aparna Jayachandran; Hoanh Tran; Toby J. Phesse; Rui Wu; Oliver M. Sieber; Diego Arango; Amardeep S. Dhillon; Mark A. Dawson; Beatriz Diez-Dacal; Timothy C. Gahman; Panagis Filippakopoulos; Andrew K. Shiau; John M. Mariadason

Inhibitors of the bromodomain and extraterminal domain (BET) protein family attenuate the proliferation of several tumor cell lines. These effects are mediated, at least in part, through repression of c-MYC. In colorectal cancer, overexpression of c-MYC due to hyperactive WNT/β-catenin/TCF signaling is a key driver of tumor progression; however, effective strategies to target this oncogene remain elusive. Here, we investigated the effect of BET inhibitors (BETi) on colorectal cancer cell proliferation and c-MYC expression. Treatment of 20 colorectal cancer cell lines with the BETi JQ1 identified a subset of highly sensitive lines. JQ1 sensitivity was higher in cell lines with microsatellite instability but was not associated with the CpG island methylator phenotype, c-MYC expression or amplification status, BET protein expression, or mutation status of TP53, KRAS/BRAF, or PIK3CA/PTEN. Conversely, JQ1 sensitivity correlated significantly with the magnitude of c-MYC mRNA and protein repression. JQ1-mediated c-MYC repression was not due to generalized attenuation of β-catenin/TCF-mediated transcription, as JQ1 had minimal effects on other β-catenin/TCF target genes or β-catenin/TCF reporter activity. BETi preferentially target super-enhancer–regulated genes, and a super-enhancer in c-MYC was recently identified in HCT116 cells to which BRD4 and effector transcription factors of the WNT/β−catenin/TCF and MEK/ERK pathways are recruited. Combined targeting of c-MYC with JQ1 and inhibitors of these pathways additively repressed c-MYC and proliferation of HCT116 cells. These findings demonstrate that BETi downregulate c-MYC expression and inhibit colorectal cancer cell proliferation and identify strategies for enhancing the effects of BETi on c-MYC repression by combinatorial targeting the c-MYC super-enhancer. Mol Cancer Ther; 15(6); 1217–26. ©2016 AACR.


Pharmacology & Therapeutics | 2016

A beacon of hope in stroke therapy—Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies

Ashfaqul Hoque; M. Iqbal Hossain; S. Sadia Ameen; Ching-Seng Ang; Nicholas A. Williamson; Dominic C. H. Ng; Anderly C. Chueh; Carli L. Roulston; Heung-Chin Cheng

Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimers and Huntingtons diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.


Journal of Biological Chemistry | 2014

The intestinal epithelial cell differentiation marker intestinal alkaline phosphatase (ALPi) is selectively induced by histone deacetylase inhibitors (HDACi) in colon cancer cells in a Kruppel-like factor 5 (KLF5)-dependent manner.

Joongho Shin; Azadeh Carr; Georgia A. Corner; Lars Tögel; Mercedes Dávalos-Salas; Hoanh Tran; Anderly C. Chueh; Sheren Al-Obaidi; Fiona Chionh; Naseem Ahmed; Daniel D. Buchanan; Joanne Young; Madhu S. Malo; Richard A. Hodin; Diego Arango; Oliver M. Sieber; Leonard H. Augenlicht; Amardeep S. Dhillon; Thomas K. Weber; John M. Mariadason

Background: Differentiation induction represents a potential cancer treatment strategy. Results: Colon cancer cell lines respond differentially to HDACi-mediated induction of the differentiation marker ALPi. HDACi induction of ALPi is KLF5-dependent. Conclusion: HDACi induce ALPi in a subset of colon cancer cell lines in a KLF5-dependent manner. Significance: Colon cancer cell lines are differentially responsive to HDACi-induced differentiation. The histone deacetylase inhibitor (HDACi) sodium butyrate promotes differentiation of colon cancer cells as evidenced by induced expression and enzyme activity of the differentiation marker intestinal alkaline phosphatase (ALPi). Screening of a panel of 33 colon cancer cell lines identified cell lines sensitive (42%) and resistant (58%) to butyrate induction of ALP activity. This differential sensitivity was similarly evident following treatment with the structurally distinct HDACi, MS-275. Resistant cell lines were significantly enriched for those harboring the CpG island methylator phenotype (p = 0.036, Chi square test), and resistant cell lines harbored methylation of the ALPi promoter, particularly of a CpG site within a critical KLF/Sp regulatory element required for butyrate induction of ALPi promoter activity. However, butyrate induction of an exogenous ALPi promoter-reporter paralleled up-regulation of endogenous ALPi expression across the cell lines, suggesting the presence or absence of a key transcriptional regulator is the major determinant of ALPi induction. Through microarray profiling of sensitive and resistant cell lines, we identified KLF5 to be both basally more highly expressed as well as preferentially induced by butyrate in sensitive cell lines. KLF5 overexpression induced ALPi promoter-reporter activity in resistant cell lines, KLF5 knockdown attenuated butyrate induction of ALPi expression in sensitive lines, and butyrate selectively enhanced KLF5 binding to the ALPi promoter in sensitive cells. These findings demonstrate that butyrate induction of the cell differentiation marker ALPi is mediated through KLF5 and identifies subsets of colon cancer cell lines responsive and refractory to this effect.


Clinical Cancer Research | 2013

Molecular Imaging of Death Receptor 5 Occupancy and Saturation Kinetics In Vivo by Humanized Monoclonal Antibody CS-1008

Ingrid J. G. Burvenich; Fook-Thean Lee; Glenn A Cartwright; Graeme O'Keefe; Dahna Makris; Diana Cao; Sylvia Gong; Anderly C. Chueh; John M. Mariadason; Martin W. Brechbiel; Robert A. Beckman; Kosaku Fujiwara; Reinhard von Roemeling; Andrew M. Scott

Purpose: CS-1008 (tigatuzumab; phase I/II), an antihuman death receptor 5 (DR5) agonist, induces apoptosis and has cytotoxic activity against human cancer cell lines. This study reports on the preclinical validation of 111In-labeled anti-DR5 humanized antibody CS-1008 as a diagnostic tool to study the DR5 occupancy in patients with cancer and establish dose ranges for receptor saturation kinetics in vivo. Experimental Design: CS-1008 was radiolabeled and characterized for DR5 binding and labeling efficiency on TRAIL-sensitive DR5–positive colorectal cancer cells (COLO 205 and WiDr). Pharmacokinetic and biodistribution studies were conducted in BALB/c nu/nu mice bearing COLO 205, WiDr, or DR5-negative CT26 colon tumors. Planar gamma camera imaging and computerized tomography (CT) images were obtained to study receptor occupancy in vivo. Results: Scatchard analysis showed high and specific binding affinity (Kd, 1.05 ± 0.12 nmol/L) of 111In-labeled CS-1008. 111In-labeled CS-1008 was specifically taken up in mice bearing COLO 205 and WiDr tumors with prolonged tumor retention (26.25 ± 2.85%ID/g vs. 12.20 ± 2.24 at 168 hours post injection; n = 5, SD), and uptake correlated both with DR5 expression on tumor cells and antitumor activity. DR5 saturation was shown in vivo via both biodistribution studies and planar gamma camera imaging/CT imaging of 111In-labeled CS-1008. Saturation of DR5 corresponded to maximal in vivo antitumor efficacy. Conclusions: Imaging of DR5 receptor occupancy in vivo correlates with tumor concentration and in vivo efficacy, and is a novel molecular imaging technique that can be used to determine receptor occupancy and effective dose levels of DR5 agonist antibodies in the clinic. Clin Cancer Res; 19(21); 5984–93. ©2013 AACR.


Oncogene | 2015

PR55α-containing protein phosphatase 2A complexes promote cancer cell migration and invasion through regulation of AP-1 transcriptional activity.

Omer Gilan; Jeannine Diesch; Marcia Amalia; Katarzyna Jastrzebski; Anderly C. Chueh; Nicole M. Verrills; Richard B. Pearson; John M. Mariadason; Eugene Tulchinsky; Ross D. Hannan; Amardeep S. Dhillon

The proto-oncogene c-Jun is a component of activator protein-1 (AP-1) transcription factor complexes that regulates processes essential for embryonic development, tissue homeostasis and malignant transformation. Induction of gene expression by c-Jun involves stimulation of its transactivation ability and upregulation of DNA binding capacity. While it is well established that the former requires JNK-mediated phosphorylation of S63/S73, the mechanism(s) through which binding of c-Jun to its endogenous target genes is regulated remains poorly characterized. Here we show that interaction of c-Jun with chromatin is positively regulated by protein phosphatase 2A (PP2A) complexes targeted to c-Jun by the PR55α regulatory subunit. PR55α-PP2A specifically dephosphorylates T239 of c-Jun, promoting its binding to genes regulating tumour cell migration and invasion. PR55α-PP2A also enhanced transcription of these genes, without affecting phosphorylation of c-Jun on S63. These findings suggest a critical role for interplay between JNK and PP2A pathways determining the functional activity of c-Jun/AP-1 in tumour cells.


BMC Cancer | 2016

Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells

Aparna Jayachandran; Pu-Han Lo; Anderly C. Chueh; Prashanth Prithviraj; Ramyar Molania; Mercedes Dávalos-Salas; Matthew Anaka; Marzena Walkiewicz; Jonathan Cebon; Andreas Behren

BackgroundThe metabolism of cancer cells is often reprogrammed by dysregulation of metabolic enzymes. Transketolase-like 1 (TKTL1) is a homodimeric transketolase linking the pentose-phosphate pathway with the glycolytic pathway. It is generally silenced at a transcriptional level in somatic tissues. However, in human cancers its expression is associated with the acquisition of a glycolytic phenotype (the Warburg effect) by cancer cells that contributes to the progression of malignant tumors. In melanoma, defective promoter methylation results in the expression of genes and their products that can affect the tumor cell’s phenotype including the modification of immune and functional characteristics. The present study evaluates the role of TKTL1 as a mediator of disease progression in melanoma associated with a defective methylation phenotype.MethodsThe expression of TKTL1 in metastatic melanoma tumors and cell lines was analysed by qRT-PCR and immunohistochemistry. The promoter methylation status of TKTL1 in melanoma cells was evaluated by quantitative methylation specific PCR. Using qRT-PCR, the effect of a DNA demethylating agent 5-aza-2’-deoxycytidine (5aza) on the expression of TKTL1 was examined. Biochemical and molecular analyses such as glucose consumption, lactate production, invasion, proliferation and cell cycle progression together with ectopic expression and siRNA mediated knockdown were used to investigate the role of TKTL1 in melanoma cells.ResultsExpression of TKTL1 was highly restricted in normal adult tissues and was overexpressed in a subset of metastatic melanoma tumors and derived cell lines. The TKTL1 promoter was activated by hypomethylation and treatment with 5aza induced TKTL1 expression in melanoma cells. Augmented expression of TKTL1 in melanoma cells was associated with a glycolytic phenotype. Loss and gain of function studies revealed that TKTL1 contributed to enhanced invasion of melanoma cells.ConclusionsOur data provide evidence for an important role of TKTL1 in aerobic glycolysis and tumor promotion in melanoma that may result from defective promoter methylation. This epigenetic change may enable the natural selection of tumor cells with a metabolic phenotype and thereby provide a potential therapeutic target for a subset of melanoma tumors with elevated TKTL1 expression.

Collaboration


Dive into the Anderly C. Chueh's collaboration.

Top Co-Authors

Avatar

John M. Mariadason

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Lars Tögel

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Amardeep S. Dhillon

Peter MacCallum Cancer Centre

View shared research outputs
Top Co-Authors

Avatar

Oliver M. Sieber

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Fiona Chionh

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Diego Arango

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sheren Al-Obaidi

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Hoanh Tran

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge