Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Götherström is active.

Publication


Featured researches published by Anders Götherström.


Nature | 2000

Molecular analysis of Neanderthal DNA from the northern Caucasus

Igor V. Ovchinnikov; Anders Götherström; Galina P. Romanova; Vitaliy M. Kharitonov; Kerstin Lidén; William Goodwin

The expansion of premodern humans into western and eastern Europe ∼40,000 years before the present led to the eventual replacement of the Neanderthals by modern humans ∼28,000 years ago. Here we report the second mitochondrial DNA (mtDNA) analysis of a Neanderthal, and the first such analysis on clearly dated Neanderthal remains. The specimen is from one of the eastern-most Neanderthal populations, recovered from Mezmaiskaya Cave in the northern Caucasus. Radiocarbon dating estimated the specimen to be ∼29,000 years old and therefore from one of the latest living Neanderthals. The sequence shows 3.48% divergence from the Feldhofer Neanderthal. Phylogenetic analysis places the two Neanderthals from the Caucasus and western Germany together in a clade that is distinct from modern humans, suggesting that their mtDNA types have not contributed to the modern human mtDNA pool. Comparison with modern populations provides no evidence for the multiregional hypothesis of modern human evolution.


Science | 2012

Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe.

Pontus Skoglund; Helena Malmström; Maanasa Raghavan; Jan Storå; Per Hall; M. Thomas P. Gilbert; Anders Götherström; Mattias Jakobsson

Farmer Displaced European Hunters Our understanding of prehistoric demography and human evolution has been improved by analysis of ancient DNA. Skoglund et al. (p. 466) describe the retrieval and analysis of genomic DNA from ancient (~5000-year-old) northern European Neolithic individuals within modern Sweden. These include three hunter-gatherers from the Pitted Ware Culture horizon and one farmer ascribed to the Mid-Neolithic North-Central TRB culture. The hunter-gatherers displayed a distinct genetic signature, similar to that of extant northern Europeans, whereas the farmers genetic signature more closely resembled southern Europeans, suggesting migration and admixture during the spread of farming. Genomic analysis of ancient Scandinavians reveals that agricultural expansion was driven by long-range population movement. The farming way of life originated in the Near East some 11,000 years ago and had reached most of the European continent 5000 years later. However, the impact of the agricultural revolution on demography and patterns of genomic variation in Europe remains unknown. We obtained 249 million base pairs of genomic DNA from ~5000-year-old remains of three hunter-gatherers and one farmer excavated in Scandinavia and find that the farmer is genetically most similar to extant southern Europeans, contrasting sharply to the hunter-gatherers, whose distinct genetic signature is most similar to that of extant northern Europeans. Our results suggest that migration from southern Europe catalyzed the spread of agriculture and that admixture in the wake of this expansion eventually shaped the genomic landscape of modern-day Europe.


Science | 2008

DNA from Pre-Clovis Human Coprolites in Oregon, North America

M. Thomas P. Gilbert; Dennis L. Jenkins; Anders Götherström; Nuria Naverán; Juan J. Sanchez; Michael Hofreiter; Philip Francis Thomsen; Jonas Binladen; Thomas Higham; Robert M. Yohe; Robert G. Parr; Linda Scott Cummings

The timing of the first human migration into the Americas and its relation to the appearance of the Clovis technological complex in North America at about 11,000 to 10,800 radiocarbon years before the present (14C years B.P.) remains contentious. We establish that humans were present at Paisley 5 Mile Point Caves, in south-central Oregon, by 12,300 14C years B.P., through the recovery of human mitochondrial DNA (mtDNA) from coprolites, directly dated by accelerator mass spectrometry. The mtDNA corresponds to Native American founding haplogroups A2 and B2. The dates of the coprolites are >1000 14C years earlier than currently accepted dates for the Clovis complex.


Science | 2007

Whole-Genome Shotgun Sequencing of Mitochondria from Ancient Hair Shafts

M. Thomas P. Gilbert; Lynn P. Tomsho; Snjezana Rendulic; Michael Packard; Daniela I. Drautz; Andrei Sher; Alexei Tikhonov; Love Dalén; T. A. Kuznetsova; Pavel A. Kosintsev; Paula F. Campos; Thomas Higham; Matthew J. Collins; Andrew S. Wilson; Fyodor Shidlovskiy; Bernard Buigues; Per G. P. Ericson; Mietje Germonpré; Anders Götherström; Paola Iacumin; V. I. Nikolaev; Malgosia Nowak-Kemp; James Knight; Gerard P. Irzyk; Clotilde S. Perbost; Karin M. Fredrikson; Timothy T. Harkins; Sharon Sheridan; Webb Miller; Stephan C. Schuster

Although the application of sequencing-by-synthesis techniques to DNA extracted from bones has revolutionized the study of ancient DNA, it has been plagued by large fractions of contaminating environmental DNA. The genetic analyses of hair shafts could be a solution: We present 10 previously unexamined Siberian mammoth (Mammuthus primigenius) mitochondrial genomes, sequenced with up to 48-fold coverage. The observed levels of damage-derived sequencing errors were lower than those observed in previously published frozen bone samples, even though one of the specimens was >50,000 14C years old and another had been stored for 200 years at room temperature. The method therefore sets the stage for molecular-genetic analysis of museum collections.


Current Biology | 2009

Ancient DNA Reveals Lack of Continuity between Neolithic Hunter-Gatherers and Contemporary Scandinavians

Helena Malmström; M. Thomas P. Gilbert; Mark G. Thomas; Mikael Brandström; Jan Storå; Petra Molnar; Pernille K. Andersen; Christian Bendixen; Gunilla Holmlund; Anders Götherström

The driving force behind the transition from a foraging to a farming lifestyle in prehistoric Europe (Neolithization) has been debated for more than a century [1-3]. Of particular interest is whether population replacement or cultural exchange was responsible [3-5]. Scandinavia holds a unique place in this debate, for it maintained one of the last major hunter-gatherer complexes in Neolithic Europe, the Pitted Ware culture [6]. Intriguingly, these late hunter-gatherers existed in parallel to early farmers for more than a millennium before they vanished some 4,000 years ago [7, 8]. The prolonged coexistence of the two cultures in Scandinavia has been cited as an argument against population replacement between the Mesolithic and the present [7, 8]. Through analysis of DNA extracted from ancient Scandinavian human remains, we show that people of the Pitted Ware culture were not the direct ancestors of modern Scandinavians (including the Saami people of northern Scandinavia) but are more closely related to contemporary populations of the eastern Baltic region. Our findings support hypotheses arising from archaeological analyses that propose a Neolithic or post-Neolithic population replacement in Scandinavia [7]. Furthermore, our data are consistent with the view that the eastern Baltic represents a genetic refugia for some of the European hunter-gatherer populations.


Science | 2008

Paleo-Eskimo mtDNA Genome Reveals Matrilineal Discontinuity in Greenland

M. Thomas P. Gilbert; Toomas Kivisild; Bjarne Grønnow; Pernille K. Andersen; Ene Metspalu; Maere Reidla; Erika Tamm; Erik Axelsson; Anders Götherström; Paula F. Campos; Morten Rasmussen; Mait Metspalu; Thomas Higham; Jean-Luc Schwenninger; Roger Nathan; Cees-Jan de Hoog; Anders Koch; Lone Nukaaraq Møller; Claus Andreasen; Morten Meldgaard; Richard Villems; Christian Bendixen

The Paleo-Eskimo Saqqaq and Independence I cultures, documented from archaeological remains in Northern Canada and Greenland, represent the earliest human expansion into the New Worlds northern extremes. However, their origin and genetic relationship to later cultures are unknown. We sequenced a mitochondrial genome from a Paleo-Eskimo human by using 3400-to 4500-year-old frozen hair excavated from an early Greenlandic Saqqaq settlement. The sample is distinct from modern Native Americans and Neo-Eskimos, falling within haplogroup D2a1, a group previously observed among modern Aleuts and Siberian Sireniki Yuit. This result suggests that the earliest migrants into the New Worlds northern extremes derived from populations in the Bering Sea area and were not directly related to Native Americans or the later Neo-Eskimos that replaced them.


Proceedings of the Royal Society of London B: Biological Sciences | 2005

Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe

Anders Götherström; Cecilia Anderung; Linda Hellborg; Rengert Elburg; Colin I. Smith; Daniel G. Bradley; Hans Ellegren

Domesticated cattle were one of the cornerstones of European Neolithisation and are thought to have been introduced to Europe from areas of aurochs domestication in the Near East. This is consistent with mitochondrial DNA (mtDNA) data, where a clear separation exists between modern European cattle and ancient specimens of British aurochsen. However, we show that Y chromosome haplotypes of north European cattle breeds are more similar to haplotypes from ancient specimens of European aurochsen, than to contemporary cattle breeds from southern Europe and the Near East. There is a sharp north–south gradient across Europe among modern cattle breeds in the frequencies of two distinct Y chromosome haplotypes; the northern haplotype is found in 20 out of 21 European aurochsen or early domestic cattle dated 9500–1000 BC. This indicates that local hybridization with male aurochsen has left a paternal imprint on the genetic composition of modern central and north European breeds. Surreptitious mating between aurochs bulls and domestic cows may have been hard to avoid, or may have occurred intentionally to improve the breeding stock. Rather than originating from a few geographical areas only, as indicated by mtDNA, our data suggest that the origin of domestic cattle may be far more complex than previously thought.


Science | 2014

Genomic Diversity and Admixture Differs for Stone-Age Scandinavian Foragers and Farmers

Pontus Skoglund; Helena Malmström; Ayca Omrak; Maanasa Raghavan; Cristina Valdiosera; Torsten Günther; Per Hall; Kristiina Tambets; Jueri Parik; Karl-Göran Sjögren; Jan Apel; Jan Storå; Anders Götherström; Mattias Jakobsson

Hunters and Farmers The Neolithic period in Europe saw the transition from a hunter-gatherer lifestyle to farming. Previous genetic analyses have suggested that hunter-gatherers were replaced by immigrant farmers. Skoglund et al. (p. 747, published online 24 April) sequenced one Mesolithic and nine Neolithic Swedish individuals to examine the transition from hunter-gatherers to farmers. Substantial genetic differentiation was observed between hunter-gatherers and farmers: There was lower genetic diversity within the hunter-gatherers and gene flow from the hunter-gatherers into the farmers but not vice versa. Population dynamics of Scandinavian Mesolithic and Neolithic hunter-gatherers differ from those of early farmers. Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer–related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups.


PLOS Genetics | 2014

Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle

Jared E. Decker; Stephanie D. McKay; Megan M. Rolf; JaeWoo Kim; Antonio Molina Alcalá; Tad S. Sonstegard; Olivier Hanotte; Anders Götherström; Christopher M. Seabury; Lisa Praharani; Masroor Ellahi Babar; Luciana Correia de Almeida Regitano; Mehmet Ali Yildiz; Michael P. Heaton; Wan-Sheng Liu; Chu-Zhao Lei; James M. Reecy; Muhammad Saif-Ur-Rehman; Robert D. Schnabel; Jeremy F. Taylor

The domestication and development of cattle has considerably impacted human societies, but the histories of cattle breeds and populations have been poorly understood especially for African, Asian, and American breeds. Using genotypes from 43,043 autosomal single nucleotide polymorphism markers scored in 1,543 animals, we evaluate the population structure of 134 domesticated bovid breeds. Regardless of the analytical method or sample subset, the three major groups of Asian indicine, Eurasian taurine, and African taurine were consistently observed. Patterns of geographic dispersal resulting from co-migration with humans and exportation are recognizable in phylogenetic networks. All analytical methods reveal patterns of hybridization which occurred after divergence. Using 19 breeds, we map the cline of indicine introgression into Africa. We infer that African taurine possess a large portion of wild African auroch ancestry, causing their divergence from Eurasian taurine. We detect exportation patterns in Asia and identify a cline of Eurasian taurine/indicine hybridization in Asia. We also identify the influence of species other than Bos taurus taurus and B. t. indicus in the formation of Asian breeds. We detect the pronounced influence of Shorthorn cattle in the formation of European breeds. Iberian and Italian cattle possess introgression from African taurine. American Criollo cattle originate from Iberia, and not directly from Africa with African ancestry inherited via Iberian ancestors. Indicine introgression into American cattle occurred in the Americas, and not Europe. We argue that cattle migration, movement and trading followed by admixture have been important forces in shaping modern bovine genomic variation.


Science | 2014

The genetic prehistory of the New World Arctic

Maanasa Raghavan; Michael DeGiorgio; Anders Albrechtsen; Ida Moltke; Pontus Skoglund; Thorfinn Sand Korneliussen; Bjarne Grønnow; Martin Appelt; Hans Christian Gulløv; T. Max Friesen; William W. Fitzhugh; Helena Malmström; Simon Rasmussen; Jesper Olsen; Linea Melchior; Benjamin T. Fuller; Simon M. Fahrni; Thomas W. Stafford; Vaughan Grimes; M. A. Priscilla Renouf; Jerome S. Cybulski; Niels Lynnerup; Marta Mirazón Lahr; Kate Britton; Rick Knecht; Jette Arneborg; Mait Metspalu; Omar E. Cornejo; Anna-Sapfo Malaspinas; Yong Wang

Introduction Humans first peopled the North American Arctic (northern Alaska, Canada, and Greenland) around 6000 years ago, leaving behind a complex archaeological record that consisted of different cultural units and distinct ways of life, including the Early Paleo-Eskimos (Pre-Dorset/Saqqaq), the Late Paleo-Eskimos (Early Dorset, Middle Dorset, and Late Dorset), and the Thule cultures. Genetic origins of Paleo-Eskimos and Neo-Eskimos. All Paleo-Eskimos represent a single migration pulse from Siberia into the Americas, independent of the Neo-Eskimo Thule people (ancestors of modern-day Inuit) and the related extinct Sadlermiut population. The Siberian Birnirk people were likely cultural and genetic ancestors of modern-day Inuit. We also show ancient admixture between the Paleo- and Neo-Eskimo lineages, occurring at least 4000 years ago. Rationale We addressed the genetic origins and relationships of the various New World Arctic cultures to each other and to modern-day populations in the region. We obtained 26 genome-wide sequences and 169 mitochondrial DNA sequences from ancient human bone, teeth, and hair samples from Arctic Siberia, Alaska, Canada, and Greenland, and high-coverage genomes of two present-day Greenlandic Inuit, two Siberian Nivkhs, one Aleutian Islander, and two Athabascan Native Americans. Twenty-seven ancient samples were radiocarbon dated for accurate cultural assignment, of which 25 were corrected for marine reservoir effect to account for the dominant marine component in these individuals’ diets. Results Nuclear and mitochondrial DNA data unequivocally show that the Paleo-Eskimos are closer to each other than to any other present-day population. The Thule culture represents a distinct people that are genetic and cultural ancestors of modern-day Inuit. We additionally find the Siberian Birnirk culture (6th to 7th century CE) as likely cultural and genetic ancestors of the Thule. The extinct Sadlermiut people from the Hudson Bay region (15th to 19th century CE), considered to be Dorset remnants, are genetically closely related to Thule/Inuit, rather than the Paleo-Eskimos. Moreover, there is no evidence of matrilineal gene flow between Dorset or Thule groups with neighboring Norse (Vikings) populations settling in the Arctic around 1000 years ago. However, we do detect gene flow between the Paleo-Eskimo and Neo-Eskimo lineages, dating back to at least 4000 years. Conclusion Our study has a number of important implications: Paleo-Eskimos likely represent a single migration pulse into the Americas from Siberia, separate from the ones giving rise to the Inuit and other Native Americans, including Athabascan speakers. Paleo-Eskimos, despite showing cultural differences across time and space, constituted a single population displaying genetic continuity for more than 4000 years. On the contrary, the Thule people, ancestors of contemporary Inuit, represent a population replacement of the Paleo-Eskimos that occurred less than 700 years ago. The long-term genetic continuity of the Paleo-Eskimo gene pool and lack of evidence of Native American admixture suggest that the Saqqaq and Dorset people were largely living in genetic isolation after entering the New World. Thus, the Paleo-Eskimo technological innovations and changes through time, as evident from the archaeological record, seem to have occurred solely by movement of ideas within a single resident population. This suggests that cultural similarities and differences are not solid proxies for population movements and migrations into new and dramatically different environments, as is often assumed. Arctic genetics comes in from the cold Despite a well-characterized archaeological record, the genetics of the people who inhabit the Arctic have been unexplored. Raghavan et al. sequenced ancient and modern genomes of individuals from the North American Arctic (see the Perspective by Park). Analyses of these genomes indicate that the Arctic was colonized 6000 years ago by a migration separate from the one that gave rise to other Native American populations. Furthermore, the original paleo-inhabitants of the Arctic appear to have been completely replaced approximately 700 years ago. Science, this issue 10.1126/science.1255832; see also p. 1004 Early Arctic humans differed from both present-day Inuit and Native Americans. [Also see Perspective by Park] The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.

Collaboration


Dive into the Anders Götherström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Love Dalén

Swedish Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Luis Arsuaga

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge