Jan Storå
Stockholm University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Storå.
Science | 2012
Pontus Skoglund; Helena Malmström; Maanasa Raghavan; Jan Storå; Per Hall; M. Thomas P. Gilbert; Anders Götherström; Mattias Jakobsson
Farmer Displaced European Hunters Our understanding of prehistoric demography and human evolution has been improved by analysis of ancient DNA. Skoglund et al. (p. 466) describe the retrieval and analysis of genomic DNA from ancient (~5000-year-old) northern European Neolithic individuals within modern Sweden. These include three hunter-gatherers from the Pitted Ware Culture horizon and one farmer ascribed to the Mid-Neolithic North-Central TRB culture. The hunter-gatherers displayed a distinct genetic signature, similar to that of extant northern Europeans, whereas the farmers genetic signature more closely resembled southern Europeans, suggesting migration and admixture during the spread of farming. Genomic analysis of ancient Scandinavians reveals that agricultural expansion was driven by long-range population movement. The farming way of life originated in the Near East some 11,000 years ago and had reached most of the European continent 5000 years later. However, the impact of the agricultural revolution on demography and patterns of genomic variation in Europe remains unknown. We obtained 249 million base pairs of genomic DNA from ~5000-year-old remains of three hunter-gatherers and one farmer excavated in Scandinavia and find that the farmer is genetically most similar to extant southern Europeans, contrasting sharply to the hunter-gatherers, whose distinct genetic signature is most similar to that of extant northern Europeans. Our results suggest that migration from southern Europe catalyzed the spread of agriculture and that admixture in the wake of this expansion eventually shaped the genomic landscape of modern-day Europe.
Current Biology | 2009
Helena Malmström; M. Thomas P. Gilbert; Mark G. Thomas; Mikael Brandström; Jan Storå; Petra Molnar; Pernille K. Andersen; Christian Bendixen; Gunilla Holmlund; Anders Götherström
The driving force behind the transition from a foraging to a farming lifestyle in prehistoric Europe (Neolithization) has been debated for more than a century [1-3]. Of particular interest is whether population replacement or cultural exchange was responsible [3-5]. Scandinavia holds a unique place in this debate, for it maintained one of the last major hunter-gatherer complexes in Neolithic Europe, the Pitted Ware culture [6]. Intriguingly, these late hunter-gatherers existed in parallel to early farmers for more than a millennium before they vanished some 4,000 years ago [7, 8]. The prolonged coexistence of the two cultures in Scandinavia has been cited as an argument against population replacement between the Mesolithic and the present [7, 8]. Through analysis of DNA extracted from ancient Scandinavian human remains, we show that people of the Pitted Ware culture were not the direct ancestors of modern Scandinavians (including the Saami people of northern Scandinavia) but are more closely related to contemporary populations of the eastern Baltic region. Our findings support hypotheses arising from archaeological analyses that propose a Neolithic or post-Neolithic population replacement in Scandinavia [7]. Furthermore, our data are consistent with the view that the eastern Baltic represents a genetic refugia for some of the European hunter-gatherer populations.
Science | 2014
Pontus Skoglund; Helena Malmström; Ayca Omrak; Maanasa Raghavan; Cristina Valdiosera; Torsten Günther; Per Hall; Kristiina Tambets; Jueri Parik; Karl-Göran Sjögren; Jan Apel; Jan Storå; Anders Götherström; Mattias Jakobsson
Hunters and Farmers The Neolithic period in Europe saw the transition from a hunter-gatherer lifestyle to farming. Previous genetic analyses have suggested that hunter-gatherers were replaced by immigrant farmers. Skoglund et al. (p. 747, published online 24 April) sequenced one Mesolithic and nine Neolithic Swedish individuals to examine the transition from hunter-gatherers to farmers. Substantial genetic differentiation was observed between hunter-gatherers and farmers: There was lower genetic diversity within the hunter-gatherers and gene flow from the hunter-gatherers into the farmers but not vice versa. Population dynamics of Scandinavian Mesolithic and Neolithic hunter-gatherers differ from those of early farmers. Prehistoric population structure associated with the transition to an agricultural lifestyle in Europe remains a contentious idea. Population-genomic data from 11 Scandinavian Stone Age human remains suggest that hunter-gatherers had lower genetic diversity than that of farmers. Despite their close geographical proximity, the genetic differentiation between the two Stone Age groups was greater than that observed among extant European populations. Additionally, the Scandinavian Neolithic farmers exhibited a greater degree of hunter-gatherer–related admixture than that of the Tyrolean Iceman, who also originated from a farming context. In contrast, Scandinavian hunter-gatherers displayed no significant evidence of introgression from farmers. Our findings suggest that Stone Age foraging groups were historically in low numbers, likely owing to oscillating living conditions or restricted carrying capacity, and that they were partially incorporated into expanding farming groups.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Torsten Günther; Cristina Valdiosera; Helena Malmström; Irene Ureña; Ricardo Rodríguez-Varela; Óddny Osk Sverrisdóttir; Evangelia Daskalaki; Pontus Skoglund; Thijessen Naidoo; Emma Svensson; José María Bermúdez de Castro; Eudald Carbonell; Michael Dunn; Jan Storå; Eneko Iriarte; Juan Luis Arsuaga; José-Miguel Carretero; Anders Götherström; Mattias Jakobsson
Significance The transition from a foraging subsistence strategy to a sedentary farming society is arguably the greatest innovation in human history. Some modern-day groups—specifically the Basques—have been argued to be a remnant population that connect back to the Paleolithic. We present, to our knowledge, the first genome-wide sequence data from eight individuals associated with archaeological remains from farming cultures in the El Portalón cave (Atapuerca, Spain). These individuals emerged from the same group of people as other Early European farmers, and they mixed with local hunter–gatherers on their way to Iberia. The El Portalón individuals showed the greatest genetic affinity to Basques, which suggests that Basques and their language may be linked with the spread of agriculture across Europe. The consequences of the Neolithic transition in Europe—one of the most important cultural changes in human prehistory—is a subject of great interest. However, its effect on prehistoric and modern-day people in Iberia, the westernmost frontier of the European continent, remains unresolved. We present, to our knowledge, the first genome-wide sequence data from eight human remains, dated to between 5,500 and 3,500 years before present, excavated in the El Portalón cave at Sierra de Atapuerca, Spain. We show that these individuals emerged from the same ancestral gene pool as early farmers in other parts of Europe, suggesting that migration was the dominant mode of transferring farming practices throughout western Eurasia. In contrast to central and northern early European farmers, the Chalcolithic El Portalón individuals additionally mixed with local southwestern hunter–gatherers. The proportion of hunter–gatherer-related admixture into early farmers also increased over the course of two millennia. The Chalcolithic El Portalón individuals showed greatest genetic affinity to modern-day Basques, who have long been considered linguistic and genetic isolates linked to the Mesolithic whereas all other European early farmers show greater genetic similarity to modern-day Sardinians. These genetic links suggest that Basques and their language may be linked with the spread of agriculture during the Neolithic. Furthermore, all modern-day Iberian groups except the Basques display distinct admixture with Caucasus/Central Asian and North African groups, possibly related to historical migration events. The El Portalón genomes uncover important pieces of the demographic history of Iberia and Europe and reveal how prehistoric groups relate to modern-day people.
BMC Evolutionary Biology | 2010
Helena Malmström; Anna Linderholm; Kerstin Lidén; Jan Storå; Petra Molnar; Gunilla Holmlund; Mattias Jakobsson; Anders Götherström
BackgroundGenes and culture are believed to interact, but it has been difficult to find direct evidence for the process. One candidate example that has been put forward is lactase persistence in adulthood, i.e. the ability to continue digesting the milk sugar lactose after childhood, facilitating the consumption of raw milk. This genetic trait is believed to have evolved within a short time period and to be related with the emergence of sedentary agriculture.ResultsHere we investigate the frequency of an allele (-13910*T) associated with lactase persistence in a Neolithic Scandinavian population. From the 14 individuals originally examined, 10 yielded reliable results. We find that the T allele frequency was very low (5%) in this Middle Neolithic hunter-gatherer population, and that the frequency is dramatically different from the extant Swedish population (74%).ConclusionsWe conclude that this difference in frequency could not have arisen by genetic drift and is either due to selection or, more likely, replacement of hunter-gatherer populations by sedentary agriculturalists.
Current Biology | 2016
Ayca Omrak; Torsten Günther; Cristina Valdiosera; Emma Svensson; Helena Malmström; Henrike Kiesewetter; William Aylward; Jan Storå; Mattias Jakobsson; Anders Götherström
Anatolia and the Near East have long been recognized as the epicenter of the Neolithic expansion through archaeological evidence. Recent archaeogenetic studies on Neolithic European human remains have shown that the Neolithic expansion in Europe was driven westward and northward by migration from a supposed Near Eastern origin [1-5]. However, this expansion and the establishment of numerous culture complexes in the Aegean and Balkans did not occur until 8,500 before present (BP), over 2,000 years after the initial settlements in the Neolithic core area [6-9]. We present ancient genome-wide sequence data from 6,700-year-old human remains excavated from a Neolithic context in Kumtepe, located in northwestern Anatolia near the well-known (and younger) site Troy [10]. Kumtepe is one of the settlements that emerged around 7,000 BP, after the initial expansion wave brought Neolithic practices to Europe. We show that this individual displays genetic similarities to the early European Neolithic gene pool and modern-day Sardinians, as well as a genetic affinity to modern-day populations from the Near East and the Caucasus. Furthermore, modern-day Anatolians carry signatures of several admixture events from different populations that have diluted this early Neolithic farmer component, explaining why modern-day Sardinian populations, instead of modern-day Anatolian populations, are genetically more similar to the people that drove the Neolithic expansion into Europe. Anatolias central geographic location appears to have served as a connecting point, allowing a complex contact network with other areas of the Near East and Europe throughout, and after, the Neolithic.
Current Biology | 2016
Gülşah Merve Kılınç; Ayca Omrak; Füsun Özer; Torsten Günther; Ali Metin Büyükkarakaya; Erhan Bıçakçı; Douglas Baird; Handan Melike Dönertaş; Ayshin Ghalichi; Reyhan Yaka; Dilek Koptekin; Sinan Can Açan; Poorya Parvizi; Maja Krzewińska; Evangelia Daskalaki; Eren Yüncü; Nihan Dilşad Dağtaş; Andrew Fairbairn; Jessica Pearson; Gökhan Mustafaoğlu; Yılmaz Selim Erdal; Yasin Gökhan Çakan; İnci Togan; Jan Storå; Mattias Jakobsson; Anders Götherström
Summary The archaeological documentation of the development of sedentary farming societies in Anatolia is not yet mirrored by a genetic understanding of the human populations involved, in contrast to the spread of farming in Europe [1, 2, 3]. Sedentary farming communities emerged in parts of the Fertile Crescent during the tenth millennium and early ninth millennium calibrated (cal) BC and had appeared in central Anatolia by 8300 cal BC [4]. Farming spread into west Anatolia by the early seventh millennium cal BC and quasi-synchronously into Europe, although the timing and process of this movement remain unclear. Using genome sequence data that we generated from nine central Anatolian Neolithic individuals, we studied the transition period from early Aceramic (Pre-Pottery) to the later Pottery Neolithic, when farming expanded west of the Fertile Crescent. We find that genetic diversity in the earliest farmers was conspicuously low, on a par with European foraging groups. With the advent of the Pottery Neolithic, genetic variation within societies reached levels later found in early European farmers. Our results confirm that the earliest Neolithic central Anatolians belonged to the same gene pool as the first Neolithic migrants spreading into Europe. Further, genetic affinities between later Anatolian farmers and fourth to third millennium BC Chalcolithic south Europeans suggest an additional wave of Anatolian migrants, after the initial Neolithic spread but before the Yamnaya-related migrations. We propose that the earliest farming societies demographically resembled foragers and that only after regional gene flow and rising heterogeneity did the farming population expansions into Europe occur.
BMC Evolutionary Biology | 2008
Helena Malmström; Carles Vilà; M. Thomas P. Gilbert; Jan Storå; Gunilla Holmlund; Anders Götherström
BackgroundGeographic distribution of the genetic diversity in domestic animals, particularly mitochondrial DNA, has often been used to infer centers of domestication. The underlying presumption is that phylogeographic patterns among domesticates were established during, or shortly after the domestication. Human activities are assumed not to have altered the haplogroup frequencies to any great extent. We studied this hypothesis by analyzing 24 mtDNA sequences in ancient Scandinavian dogs. Breeds originating in northern Europe are characterized by having a high frequency of mtDNA sequences belonging to a haplogroup rare in other populations (HgD). This has been suggested to indicate a possible origin of the haplogroup (perhaps even a separate domestication) in central or northern Europe.ResultsThe sequences observed in the ancient samples do not include the haplogroup indicative for northern European breeds (HgD). Instead, several of them correspond to haplogroups that are uncommon in the region today and that are supposed to have Asian origin.ConclusionWe find no evidence for local domestication. We conclude that interpretation of the processes responsible for current domestic haplogroup frequencies should be carried out with caution if based only on contemporary data. They do not only tell their own story, but also that of humans.
Philosophical Transactions of the Royal Society B | 2014
Helena Malmström; Anna Linderholm; Pontus Skoglund; Jan Storå; Per Sjödin; M. Thomas P. Gilbert; Gunilla Holmlund; Mattias Jakobsson; Kerstin Lidén; Anders Götherström
The European Neolithization process started around 12 000 years ago in the Near East. The introduction of agriculture spread north and west throughout Europe and a key question has been if this was brought about by migrating individuals, by an exchange of ideas or a by a mixture of these. The earliest farming evidence in Scandinavia is found within the Funnel Beaker Culture complex (Trichterbecherkultur, TRB) which represents the northernmost extension of Neolithic farmers in Europe. The TRB coexisted for almost a millennium with hunter–gatherers of the Pitted Ware Cultural complex (PWC). If migration was a substantial part of the Neolithization, even the northerly TRB community would display a closer genetic affinity to other farmer populations than to hunter–gatherer populations. We deep-sequenced the mitochondrial hypervariable region 1 from seven farmers (six TRB and one Battle Axe complex, BAC) and 13 hunter–gatherers (PWC) and authenticated the sequences using postmortem DNA damage patterns. A comparison with 124 previously published sequences from prehistoric Europe shows that the TRB individuals share a close affinity to Central European farmer populations, and that they are distinct from hunter–gatherer groups, including the geographically close and partially contemporary PWC that show a close affinity to the European Mesolithic hunter–gatherers.
Proceedings of the Royal Society of London B: Biological Sciences | 2008
Karin E. Limburg; Yvonne Walther; Bongghi Hong; Carina Olson; Jan Storå
Combining Stone Age and modern data provides unique insights for management, extending beyond contemporary problems and shifting baselines. Using fish chronometric parts, we compared demographic characteristics of exploited cod populations from the Neolithic Period (4500 BP) to the modern highly exploited fishery in the central Baltic Sea. We found that Neolithic cod were larger (mean 56.4 cm, 95% confidence interval (CI)±0.9) than modern fish (weighted mean length in catch =49.5±0.2 cm in 1995, 48.2±0.2 cm in 2003), and older (mean ages =4.7±0.11, 3.1±0.02 and 3.6±0.02 years for Neolithic, 1995, and 2003 fisheries, respectively). Fishery-independent surveys in 1995 and 2003 show that mean sizes in the stock are 16–17 cm smaller than reflected in the fishery, and mean ages approximately 1–1.5 years younger. Modelled von Bertalanffy growth and back-calculated lengths indicated that Neolithic cod grew to smaller asymptotic lengths, but were larger at younger ages, implying rapid early growth. Very small Neolithic cod were absent and large individuals were rare as in modern times. This could be owing to selective harvests, the absence of small and large fish in the area or a combination. Comparing modern and prehistoric times, fishery selection is evident, but apparently not as great as in the North Atlantic proper.