Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anders Lindfors is active.

Publication


Featured researches published by Anders Lindfors.


Journal of Geophysical Research | 2007

Validation of daily erythemal doses from Ozone Monitoring Instrument with ground‐based UV measurement data

Aapo Tanskanen; Anders Lindfors; Anu Määttä; Nickolay A. Krotkov; Jay R. Herman; Jussi Kaurola; Tapani Koskela; Kaisa Lakkala; Vitali E. Fioletov; Germar Bernhard; Richard McKenzie; Yutaka Kondo; Michael O'Neill; Harry Slaper; Peter den Outer; A. F. Bais; J. Tamminen

[1] The Dutch-Finnish Ozone Monitoring Instrument (OMI) on board the NASA EOS Aura spacecraft is a nadir viewing spectrometer that measures solar reflected and backscattered light in a selected range of the ultraviolet and visible spectrum. The instrument has a 2600 km wide viewing swath and it is capable of daily, global contiguous mapping. The Finnish Meteorological Institute and NASA Goddard Space Flight Center have developed a surface ultraviolet irradiance algorithm for OMI that produces noontime surface spectral UV irradiance estimates at four wavelengths, noontime erythemal dose rate (UV index), and the erythemal daily dose. The overpass erythemal daily doses derived from OMI data were compared with the daily doses calculated from the ground-based spectral UV measurements from 18 reference instruments. Two alternative methods for the OMI UV algorithm cloud correction were compared: the plane-parallel cloud model method and the method based on Lambertian equivalent reflectivity. The validation results for the two methods showed some differences, but the results do not imply that one method is categorically superior to the other. For flat, snow-free regions with modest loadings of absorbing aerosols or trace gases, the OMI-derived daily erythemal doses have a median overestimation of 0–10%, and some 60 to 80% of the doses are within ±20% from the ground reference. For sites significantly affected by absorbing aerosols or trace gases one expects, and observes, bigger positive bias up to 50%. For high-latitude sites the satellite-derived doses are occasionally up to 50% too small because of unrealistically small climatological surface albedo.


Plant Physiology | 2013

Multiple Roles for UV RESISTANCE LOCUS8 in Regulating Gene Expression and Metabolite Accumulation in Arabidopsis under Solar Ultraviolet Radiation

Luis O. Morales; Mikael Brosché; Julia P. Vainonen; Gareth I. Jenkins; Jason J. Wargent; Nina Sipari; Åke Strid; Anders Lindfors; Riita Tegelberg; Pedro J. Aphalo

Summary: Under natural sunlight, this study demonstrates multiple and complex roles for the UV-B photoreceptor UV RESISTANCE LOCUS 8 in the acclimation of Arabidopsis plants to UV radiation. Photomorphogenic responses triggered by low fluence rates of ultraviolet B radiation (UV-B; 280–315 nm) are mediated by the UV-B photoreceptor UV RESISTANCE LOCUS8 (UVR8). Beyond our understanding of the molecular mechanisms of UV-B perception by UVR8, there is still limited information on how the UVR8 pathway functions under natural sunlight. Here, wild-type Arabidopsis (Arabidopsis thaliana) and the uvr8-2 mutant were used in an experiment outdoors where UV-A (315–400 nm) and UV-B irradiances were attenuated using plastic films. Gene expression, PYRIDOXINE BIOSYNTHESIS1 (PDX1) accumulation, and leaf metabolite signatures were analyzed. The results show that UVR8 is required for transcript accumulation of genes involved in UV protection, oxidative stress, hormone signal transduction, and defense against herbivores under solar UV. Under natural UV-A irradiance, UVR8 is likely to interact with UV-A/blue light signaling pathways to moderate UV-B-driven transcript and PDX1 accumulation. UVR8 both positively and negatively affects UV-A-regulated gene expression and metabolite accumulation but is required for the UV-B induction of phenolics. Moreover, UVR8-dependent UV-B acclimation during the early stages of plant development may enhance normal growth under long-term exposure to solar UV.


Photochemistry and Photobiology | 2009

Assessment of UV Biological Spectral Weighting Functions for Phenolic Metabolites and Growth Responses in Silver Birch Seedlings

Titta Kotilainen; Tuulia Venäläinen; Riitta Tegelberg; Anders Lindfors; Riitta Julkunen-Tiitto; Sirkka Sutinen; Robert B. O'Hara; Pedro J. Aphalo

In research concerning stratospheric ozone depletion, action spectra are used as biological spectral weighting functions (BSWFs) for describing the effects of UV radiation on plant responses. Our aim was to evaluate the appropriateness of six frequently used BSWFs that differ in effectiveness with increasing wavelength. The evaluation of action spectra was based on calculating the effective UV radiation doses according to 1–2) two formulations of the generalized plant action spectrum, 3) a spectrum for ultraviolet induced erythema in human skin, 4) a spectrum for the accumulation of a flavonol in Mesembryanthemum crystallinum, 5) a spectrum for DNA damage in alfalfa seedlings and 6) the plant growth action spectrum. We monitored effects of UV radiation on the concentration of individual UV absorbing metabolites and chlorophyll concentrations in leaves and growth responses of silver birch (Betula pendula) seedlings. Experiments were conducted outdoors using plastic films attenuating different parts of the UV spectrum. Chlorophyll concentrations and growth were not affected by the UV treatments. The response to UV radiation varied between and within groups of phenolics. In general, the observed responses of phenolic groups and individual flavonoids were best predicted by action spectra extending into the UV‐A region with moderate effectiveness.


Plant Cell and Environment | 2015

Epidermal UV-A absorbance and whole-leaf flavonoid composition in pea respond more to solar blue light than to solar UV radiation

Sari Siipola; Titta Kotilainen; Nina Sipari; Luis O. Morales; Anders Lindfors; T. Matthew Robson; Pedro J. Aphalo

Plants synthesize phenolic compounds in response to certain environmental signals or stresses. One large group of phenolics, flavonoids, is considered particularly responsive to ultraviolet (UV) radiation. However, here we demonstrate that solar blue light stimulates flavonoid biosynthesis in the absence of UV-A and UV-B radiation. We grew pea plants (Pisum sativum cv. Meteor) outdoors, in Finland during the summer, under five types of filters differing in their spectral transmittance. These filters were used to (1) attenuate UV-B; (2) attenuate UV-B and UV-A < 370 nm; (3) attenuate UV-B and UV-A; (4) attenuate UV-B, UV-A and blue light; and (5) as a control not attenuating these wavebands. Attenuation of blue light significantly reduced the flavonoid content in leaf adaxial epidermis and reduced the whole-leaf concentrations of quercetin derivatives relative to kaempferol derivatives. In contrast, UV-B responses were not significant. These results show that pea plants regulate epidermal UV-A absorbance and accumulation of individual flavonoids by perceiving complex radiation signals that extend into the visible region of the solar spectrum. Furthermore, solar blue light instead of solar UV-B radiation can be the main regulator of phenolic compound accumulation in plants that germinate and develop outdoors.


Remote Sensing | 2006

Modelling solar UV radiation in the past: comparison of algorithms and input data

Peter Koepke; H. De Backer; A. F. Bais; A. Curylo; Kalju Eerme; Uwe Feister; B. Johnsen; J. Junk; A. Kazantzidis; Janusz W. Krzyscin; Anders Lindfors; Jan Asle Olseth; P. N. den Outer; A. Pribullova; Alois W. Schmalwieser; Harry Slaper; Henning Staiger; J. Verdebout; Laurent Vuilleumier; Philipp Weihs

The objectives of the COST action 726 are to establish long-term changes of UV-radiation in the past, which can only be derived by modelling with good and available proxy data. To find the best available models and input data, 16 models have been tested by modelling daily doses for two years of data measured at four stations distributed over Europe. The modelled data have been compared with the measured data, using different statistical methods. Models that use Cloud Modification Factors for the UV spectral range, derived from co-located measured global irradiance, give the best results.


Remote Sensing | 2015

Validation of CM SAF Surface Solar Radiation Datasets over Finland and Sweden

Aku Riihelä; Thomas Carlund; Jörg Trentmann; Richard W. Muller; Anders Lindfors

Accurate determination of the amount of incoming solar radiation at Earth’s surface is important for both climate studies and solar power applications. Satellite-based datasets of solar radiation offer wide spatial and temporal coverage, but careful validation of their quality is a necessary prerequisite for reliable utilization. Here we study the retrieval quality of one polar-orbiting satellite-based dataset (CLARA-A1) and one geostationary satellite-based dataset (SARAH), using in situ observations of solar radiation from the Finnish and Swedish meteorological measurement networks as reference. Our focus is on determining dataset quality over high latitudes as well as evaluating daily mean retrievals, both of which are aspects that have drawn little focus in previous studies. We find that both datasets are generally capable of retrieving the levels and seasonal cycles of solar radiation in Finland and Sweden well, with some limitations. SARAH exhibits a slight negative bias and increased retrieval uncertainty near the coverage edge, but in turn offers better precision (less scatter) in the daily mean retrievals owing to the high sampling rate of geostationary imaging.


Photochemistry and Photobiology | 2009

Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

Anders Lindfors; Anu Heikkilä; Jussi Kaurola; Tapani Koskela; Kaisa Lakkala

UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth’s surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300–3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within ±8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70°. In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).


Photochemistry and Photobiology | 2011

How Realistically Does Outdoor UV-B Supplementation with Lamps Reflect Ozone Depletion: An Assessment of Enhancement Errors

Titta Kotilainen; Anders Lindfors; Riitta Tegelberg; Pedro J. Aphalo

Limitations in the realism of currently available lamps mean that enhancement errors in outdoor experiments simulating UV‐B radiation effects of stratospheric ozone depletion can be large. Here, we assess the magnitude of such errors at two Finnish locations, during May and June, under three cloud conditions. First we simulated solar radiation spectra for normal, compared with 10% and 20% ozone depletion, and convoluted the daily integrated solar spectra with eight biological spectral weighting functions (BSWFs) of relevance to effects of UV on plants. We also convoluted a measured spectrum from cellulose‐acetate filtered UV‐B lamps with the same eight BSWFs. From these intermediate results we calculated the enhancement errors. Differences between locations and months were small, cloudiness had only a minor effect. This assessment was based on the assumption that no extra enhancement compensating for shading of UV radiation by lamp frames is performed. Under this assumption errors between spectra are due to differences in the UV‐B effectiveness rather than differences in the UV‐A effectiveness. Hence, conclusions about plant growth from past UV‐supplementation experiments should be valid. However, interpretation of the response of individual physiological processes is less secure, so results from some field experiments with lamps might need reassessment.


Remote Sensing of Environment | 2017

Extensive validation of CM SAF surface radiation products over Europe

R. Urraca; Ana M. Gracia-Amillo; Elena Koubli; Thomas Huld; Jörg Trentmann; Aku Riihelä; Anders Lindfors; Diane Palmer; Ralph Gottschalg; F. Antonanzas-Torres

This work presents a validation of three satellite-based radiation products over an extensive network of 313 pyranometers across Europe, from 2005 to 2015. The products used have been developed by the Satellite Application Facility on Climate Monitoring (CM SAF) and are one geostationary climate dataset (SARAH-JRC), one polar-orbiting climate dataset (CLARA-A2) and one geostationary operational product. Further, the ERA-Interim reanalysis is also included in the comparison. The main objective is to determine the quality level of the daily means of CM SAF datasets, identifying their limitations, as well as analyzing the different factors that can interfere in the adequate validation of the products. The quality of the pyranometer was the most critical source of uncertainty identified. In this respect, the use of records from Second Class pyranometers and silicon-based photodiodes increased the absolute error and the bias, as well as the dispersion of both metrics, preventing an adequate validation of the daily means. The best spatial estimates for the three datasets were obtained in Central Europe with a Mean Absolute Deviation (MAD) within 8–13 W/m2, whereas the MAD always increased at high-latitudes, snow-covered surfaces, high mountain ranges and coastal areas. Overall, the SARAH-JRCs accuracy was demonstrated over a dense network of stations making it the most consistent dataset for climate monitoring applications. The operational dataset was comparable to SARAH-JRC in Central Europe, but lacked of the temporal stability of climate datasets, while CLARA-A2 did not achieve the same level of accuracy despite predictions obtained showed high uniformity with a small negative bias. The ERA-Interim reanalysis shows the by-far largest deviations from the surface reference measurements.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2009

The PROMOTE UV Record: Toward a Global Satellite-Based Climatology of Surface Ultraviolet Irradiance

Anders Lindfors; Aapo Tanskanen; Antti Arola; A. F. Bais; Uwe Feister; Michal Janouch; Weine Josefsson; Tapani Koskela; Kaisa Lakkala; P. N. den Outer; Andrew Smedley; Harry Slaper; Ann R. Webb

This paper describes the PROMOTE UV Record, which aims to provide a global long-term record of the surface UV radiation. The algorithm developed takes as input cloud information from the International Satellite Cloud Climatology Project (ISCCP) and a recently developed multisensor assimilated record of the total ozone column. Aerosols and surface albedo are based on climatologies. Here, first validation results of the PROMOTE UV Record are presented through comparison against ground-based measurements of daily erythemal UV doses at eight European stations. The validation shows that the method is working reasonably, although there is a clear tendency toward overestimation. Typically, the median bias as compared to measurements is 3%-10% and 56%-68% of the daily doses are within plusmn20% from the ground-based reference. The prototype version of the PROMOTE UV Record included in this paper covers the period from July 2002 to June 2005. The time series will later be extended to start in 1983.

Collaboration


Dive into the Anders Lindfors's collaboration.

Top Co-Authors

Avatar

Antti Arola

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Tapani Koskela

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Kaisa Lakkala

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Anu Heikkilä

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Jussi Kaurola

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

A. F. Bais

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Aapo Tanskanen

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar

Outi Meinander

Finnish Meteorological Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge