Anders Moen
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anders Moen.
Nature Communications | 2012
Stefan Kernstock; Erna Davydova; Magnus E. Jakobsson; Anders Moen; Solveig Pettersen; Gunhild M. Mælandsmo; Wolfgang Egge-Jacobsen; Pål Ø. Falnes
Valosin-containing protein (VCP, also called p97) is an essential and highly conserved adenosine triphosphate-dependent chaperone implicated in a wide range of cellular processes in eukaryotes, and mild VCP mutations can cause severe neurodegenerative disease. Here we show that mammalian VCP is trimethylated on Lys315 in a variety of cell lines and tissues, and that the previously uncharacterized protein METTL21D (denoted here as VCP lysine methyltransferase, VCP-KMT) is the responsible enzyme. VCP methylation was abolished in three human VCP-KMT knockout cell lines generated with zinc-finger nucleases. Interestingly, VCP-KMT was recently reported to promote tumour metastasis, and indeed, VCP-KMT-deficient cells displayed reduced growth rate, migration and invasive potential. Finally, we present data indicating that VCP-KMT, calmodulin-lysine methyltransferase and eight uncharacterized proteins together constitute a novel human protein methyltransferase family. The present work provides new insights on protein methylation and its links to human disease.
Journal of Biological Chemistry | 2013
Magnus E. Jakobsson; Anders Moen; Luc Bousset; Wolfgang Egge-Jacobsen; Stefan Kernstock; Ronald Melki; Pål Ø. Falnes
Background: The function of many proteins is regulated through post-translational methylation. Results: METTL21A was identified as a human protein methyltransferase targeting Hsp70 proteins, thereby altering their ability to interact with client proteins. Conclusion: METTL21A is a specific methyltransferase modulating the function of Hsp70 proteins. Significance: The activity of a human protein-modifying enzyme is unraveled, and the modification is demonstrated to have functional consequences. Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein.
Journal of Bacteriology | 2012
Lasse Fredriksen; Geir Mathiesen; Anders Moen; Peter A. Bron; Michiel Kleerebezem; Vincent G. H. Eijsink; Wolfgang Egge-Jacobsen
The major autolysin Acm2 from the probiotic strain Lactobacillus plantarum WCFS1 contains high proportions of alanine, serine, and threonine in its N-terminal so-called AST domain. It has been suggested that this extracellular protein might be glycosylated, but this has not been experimentally verified. We used high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) to study the possible occurrence of glycans on peptides generated from lactobacillary surface proteins by protease treatment. This approach yielded five glycopeptides in various glycoforms, all derived from the AST domain of Acm2. All five glycopeptides contained the hydroxy-amino acids serine and threonine, suggesting that Acm2 is O-glycosylated. By using lectin blotting with succinylated wheat germ agglutinin, and by comparing the wild-type strain with an Acm2-negative derivative (NZ3557), we found that the attached N-acetylhexosamines are most likely N-acetylglucosamines (GlcNAc). NZ3557 was further used as a genetic background to express an Acm2 variant lacking its secretion signal, resulting in intracellular expression of Acm2. We show that this intracellular version of Acm2 is also glycosylated, indicating that the GlcNAc modification is an intracellular process.
Journal of Biological Chemistry | 2015
Jędrzej Małecki; Angela Y. Y. Ho; Anders Moen; Helge-André Dahl; Pål Ø. Falnes
Background: Many proteins are modified by lysine methylation. Results: It is shown that the previously uncharacterized enzyme METTL20 methylates electron transfer flavoprotein β (ETFβ), thereby inhibiting its ability to mediate electron transfer from acyl-CoA dehydrogenases. Conclusion: METTL20-mediated methylation modulates the function of ETFβ. Significance: The first mitochondrial lysine-specific protein methyltransferase in animals is reported, and the resulting methylation is shown to have functional consequences. Proteins are frequently modified by post-translational methylation of lysine residues, catalyzed by S-adenosylmethionine-dependent lysine methyltransferases (KMTs). Lysine methylation of histone proteins has been extensively studied, but it has recently become evident that methylation of non-histone proteins is also abundant and important. The human methyltransferase METTL20 belongs to a group of 10 established and putative human KMTs. We here found METTL20 to be associated with mitochondria and determined that recombinant METTL20 methylated a single protein in extracts from human cells. Using an methyltransferase activity-based purification scheme, we identified the β-subunit of the mitochondrially localized electron transfer flavoprotein (ETFβ) as the substrate of METTL20. Furthermore, METTL20 was found to specifically methylate two adjacent lysine residues, Lys200 and Lys203, in ETFβ both in vitro and in cells. Interestingly, the residues methylated by METTL20 partially overlap with the so-called “recognition loop” in ETFβ, which has been shown to mediate its interaction with various dehydrogenases. Accordingly, we found that METTL20-mediated methylation of ETFβ in vitro reduced its ability to receive electrons from the medium chain acyl-CoA dehydrogenase and the glutaryl-CoA dehydrogenase. In conclusion, the present study establishes METTL20 as the first human KMT localized to mitochondria and suggests that it may regulate cellular metabolism through modulating the interaction between its substrate ETFβ and dehydrogenases. Based on the previous naming of similar enzymes, we suggest the renaming of human METTL20 to ETFβ-KMT.
Journal of Immunology | 2015
Algirdas Grevys; Malin Bern; Stian Foss; Diane Lynn Bryant Bratlie; Anders Moen; Kristin Støen Gunnarsen; Audun Aase; Terje E. Michaelsen; Inger Sandlie; Jan Terje Andersen
Engineering of the constant Fc part of monoclonal human IgG1 (hIgG1) Abs is an approach to improve effector functions and clinical efficacy of next-generation IgG1-based therapeutics. A main focus in such development is tailoring of in vivo half-life and transport properties by engineering the pH-dependent interaction between IgG and the neonatal Fc receptor (FcRn), as FcRn is the main homeostatic regulator of hIgG1 half-life. However, whether such engineering affects binding to other Fc-binding molecules, such as the classical FcγRs and complement factor C1q, has not been studied in detail. These effector molecules bind to IgG1 in the lower hinge–CH2 region, structurally distant from the binding site for FcRn at the CH2–CH3 elbow region. However, alterations of the structural composition of the Fc may have long-distance effects. Indeed, in this study we show that Fc engineering of hIgG1 for altered binding to FcRn also influences binding to both the classical FcγRs and complement factor C1q, which ultimately results in alterations of cellular mechanisms such as Ab-dependent cell-mediated cytotoxicity, Ab-dependent cellular phagocytosis, and Ab-dependent complement-mediated cell lysis. Thus, engineering of the FcRn–IgG1 interaction may greatly influence effector functions, which has implications for the therapeutic efficacy and use of Fc-engineered hIgG1 variants.
Journal of Biological Chemistry | 2014
Erna Davydova; Angela Y. Y. Ho; Jędrzej Małecki; Anders Moen; Jorrit M. Enserink; Magnus E. Jakobsson; Christoph Loenarz; Pål Ø. Falnes
Background: The function of many proteins is regulated through post-translational methylation. Results: The previously uncharacterized human methyltransferase FAM86A and its yeast homologue Yjr129c methylate eukaryotic translation elongation factor 2 (eEF2), altering translational frameshifting. Conclusion: Evolutionarily conserved FAM86A methyltransferase modulates the function of eEF2. Significance: The activity of a novel protein-modifying enzyme is discovered and is shown to have functional consequences. The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.
PLOS ONE | 2015
Magnus E. Jakobsson; Erna Davydova; Jędrzej Małecki; Anders Moen; Pål Ø. Falnes
The human methyltransferases (MTases) METTL21A and VCP-KMT (METTL21D) were recently shown to methylate single lysine residues in Hsp70 proteins and in VCP, respectively. The yet uncharacterized MTase encoded by the YNL024C gene in Saccharomyces cerevisiae shows high sequence similarity to METTL21A and VCP-KMT, as well as to their uncharacterized paralogues METTL21B and METTL21C. Despite being most similar to METTL21A, the Ynl024c protein does not methylate yeast Hsp70 proteins, which were found to be unmethylated on the relevant lysine residue. Eukaryotic translation elongation factor eEF1A in yeast has been reported to contain four methylated lysine residues (Lys30, Lys79, Lys318 and Lys390), and we here show that the YNL024C gene is required for methylation of eEF1A at Lys390, the only of these methylations for which the responsible MTase has not yet been identified. Lys390 was found in a partially monomethylated state in wild-type yeast cells but was exclusively unmethylated in a ynl024cΔ strain, and over-expression of Ynl024c caused a dramatic increase in Lys390 methylation, with trimethylation becoming the predominant state. Our results demonstrate that Ynl024c is the enzyme responsible for methylation of eEF1A at Lys390, and in accordance with prior naming of similar enzymes, we suggest that Ynl024c is renamed to Efm6 (Elongation factor MTase 6).
Eupa Open Proteomics | 2014
Christiane Kruse Fæste; Karen R. Jonscher; Maaike M.W.B. Dooper; Wolfgang Egge-Jacobsen; Anders Moen; Alvaro Daschner; Eliann Egaas; Uwe Christians
The parasitic nematode Anisakis simplex occurs in fish stocks in temperate seas. A. simplex contamination of fish products is unsavoury and a health concern considering human infection with live larvae (anisakiasis) and allergic reactions to anisakid proteins in seafood. Protein extracts of A. simplex produce complex band patterns in gel electrophoresis and IgE-immunostaining. In the present study potential allergens have been characterised using sera from A. simplex-sensitised patients and proteome data obtained by mass spectrometry. A. simplex proteins were homologous to allergens in other nematodes, insects, and shellfish indicating cross-reactivity. Characteristic marker peptides for relevant A. simplex proteins were described.
Glycobiology | 2013
Lasse Fredriksen; Anders Moen; Alexei A. Adzhubei; Geir Mathiesen; Vincent G. H. Eijsink; Wolfgang Egge-Jacobsen
It has recently been shown that the major autolysin Acm2 from Lactobacillus plantarum WCFS1 undergoes intracellular O-GlcNAcylation [Fredriksen L, Mathiesen G, Moen A, Bron PA, Kleerebezem M, Eijsink VG, Egge-Jacobsen W. 2012. The major autolysin Acm2 from Lactobacillus plantarum undergoes cytoplasmic O-glycosylation. J Bacteriol. 194(2):325-333]. To gain more insight into the occurrence of this protein modification, methods based on the higher energy collisional fragmentation of the Orbitrap XL mass spectrometer to generate both diagnostic oxonium (glycan) ions and significant peptide sequencing information were used to detect and identify novel glycoproteins. This led to the identification of 10 novel glycoproteins, including four proteins with well-known functions in the cytoplasm, a compartment not previously recognized to contain glycosylated proteins in bacteria: the molecular chaperone DnaK, the E2 subunit of the pyruvate dehydrogenase complex PdhC, the signal recognition particle receptor FtsY and the DNA translocase FtsK1. Among the other, glycosylated proteins were two extracellular peptidoglycan hydrolases and a mucus-binding protein. In total, 49 glycosylation sites for N-acetylhexosamine (HexNAc) were detected in the 11 Lactobacillus glycoproteins found so far. Most of the attached glycans consisted of a single HexNAc per site, whereas hexose moieties were also found in a few cases (in both of the peptidoglycan hydrolases and in DnaK).
Nucleic Acids Research | 2017
Jędrzej Małecki; Vinay Kumar Aileni; Angela Y. Y. Ho; Juliane P. Schwarz; Anders Moen; Vigdis Sørensen; Benedikt S. Nilges; Magnus E. Jakobsson; Sebastian A. Leidel; Pål Ø. Falnes
Abstract Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.