Jędrzej Małecki
University of Oslo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jędrzej Małecki.
The EMBO Journal | 2002
Jędrzej Małecki; Antoni Wiedlocha; Jørgen Wesche; Sjur Olsnes
Externally added fibroblast growth factor‐1 (FGF‐1) is capable of crossing cellular membranes to reach the cytosol and the nucleus in a number of cell types. We have monitored the translocation of the growth factor by two methods: phosphorylation of FGF‐1, and prenylation of an FGF‐1 mutant that contains a C‐terminal prenylation signal. Inhibition of endosomal acidification by ammonium chloride or monensin did not block the translocation of FGF‐1, whereas bafilomycin A1, a specific inhibitor of vacuolar proton pumps, blocked translocation completely. A combination of ionophores expected to dissipate the vesicular membrane potential (valinomycin plus monensin) also fully inhibited the translocation. The inhibition of translocation by bafilomycin A1 was overcome in the presence of monensin or nigericin, while ouabain blocked translocation under these conditions. The data indicate that translocation of FGF‐1 to cytosol occurs from the lumen of intracellular vesicles possessing vacuolar proton pumps, and that a vesicular membrane potential is required. Apparently, activation of vesicular Na+/K+‐ATPase by monensin or nigericin generates a membrane potential that can support translocation when the proton pump is blocked.
Journal of Biological Chemistry | 2006
Jørgen Wesche; Jędrzej Małecki; Antoni Wiedlocha; Camilla Skiple Skjerpen; Peter Claus; Sjur Olsnes
Similarly to many protein toxins, the growth factors fibroblast growth factor 1 (FGF-1) and FGF-2 translocate from endosomes into the cytosol. It was recently found that certain toxins are dependent on cytosolic Hsp90 for efficient translocation across the endosomal membrane. We therefore investigated the requirement for Hsp90 in FGF translocation. We found that low concentrations of the specific Hsp90 inhibitors, geldanamycin and radicicol, completely blocked the translocation of FGF-1 and FGF-2 to the cytosol and the nucleus. The drugs did not interfere with the initial binding of FGF-1 to the growth factor receptors at the cell-surface or with the subsequent internalization of the growth factors into endosomes. The activation of known signaling cascades downstream of the growth factor receptors was also not affected by the drugs. The data indicate that the drugs block translocation from endosomes to the cytosol implying that Hsp90 is required for translocation of FGF-1 and FGF-2 across the endosomal membrane.
Journal of Biological Chemistry | 2015
Jędrzej Małecki; Angela Y. Y. Ho; Anders Moen; Helge-André Dahl; Pål Ø. Falnes
Background: Many proteins are modified by lysine methylation. Results: It is shown that the previously uncharacterized enzyme METTL20 methylates electron transfer flavoprotein β (ETFβ), thereby inhibiting its ability to mediate electron transfer from acyl-CoA dehydrogenases. Conclusion: METTL20-mediated methylation modulates the function of ETFβ. Significance: The first mitochondrial lysine-specific protein methyltransferase in animals is reported, and the resulting methylation is shown to have functional consequences. Proteins are frequently modified by post-translational methylation of lysine residues, catalyzed by S-adenosylmethionine-dependent lysine methyltransferases (KMTs). Lysine methylation of histone proteins has been extensively studied, but it has recently become evident that methylation of non-histone proteins is also abundant and important. The human methyltransferase METTL20 belongs to a group of 10 established and putative human KMTs. We here found METTL20 to be associated with mitochondria and determined that recombinant METTL20 methylated a single protein in extracts from human cells. Using an methyltransferase activity-based purification scheme, we identified the β-subunit of the mitochondrially localized electron transfer flavoprotein (ETFβ) as the substrate of METTL20. Furthermore, METTL20 was found to specifically methylate two adjacent lysine residues, Lys200 and Lys203, in ETFβ both in vitro and in cells. Interestingly, the residues methylated by METTL20 partially overlap with the so-called “recognition loop” in ETFβ, which has been shown to mediate its interaction with various dehydrogenases. Accordingly, we found that METTL20-mediated methylation of ETFβ in vitro reduced its ability to receive electrons from the medium chain acyl-CoA dehydrogenase and the glutaryl-CoA dehydrogenase. In conclusion, the present study establishes METTL20 as the first human KMT localized to mitochondria and suggests that it may regulate cellular metabolism through modulating the interaction between its substrate ETFβ and dehydrogenases. Based on the previous naming of similar enzymes, we suggest the renaming of human METTL20 to ETFβ-KMT.
Journal of Biological Chemistry | 2014
Erna Davydova; Angela Y. Y. Ho; Jędrzej Małecki; Anders Moen; Jorrit M. Enserink; Magnus E. Jakobsson; Christoph Loenarz; Pål Ø. Falnes
Background: The function of many proteins is regulated through post-translational methylation. Results: The previously uncharacterized human methyltransferase FAM86A and its yeast homologue Yjr129c methylate eukaryotic translation elongation factor 2 (eEF2), altering translational frameshifting. Conclusion: Evolutionarily conserved FAM86A methyltransferase modulates the function of eEF2. Significance: The activity of a novel protein-modifying enzyme is discovered and is shown to have functional consequences. The components of the cellular protein translation machinery, such as ribosomal proteins and translation factors, are subject to numerous post-translational modifications. In particular, this group of proteins is frequently methylated. However, for the majority of these methylations, the responsible methyltransferases (MTases) remain unknown. The human FAM86A (family with sequence similarity 86) protein belongs to a recently identified family of protein MTases, and we here show that FAM86A catalyzes the trimethylation of eukaryotic elongation factor 2 (eEF2) on Lys-525. Moreover, we demonstrate that the Saccharomyces cerevisiae MTase Yjr129c, which displays sequence homology to FAM86A, is a functional FAM86A orthologue, modifying the corresponding residue (Lys-509) in yeast eEF2, both in vitro and in vivo. Finally, Yjr129c-deficient yeast cells displayed phenotypes related to eEF2 function (i.e. increased frameshifting during protein translation and hypersensitivity toward the eEF2-specific drug sordarin). In summary, the present study establishes the function of the previously uncharacterized MTases FAM86A and Yjr129c, demonstrating that these enzymes introduce a functionally important lysine methylation in eEF2. Based on the previous naming of similar enzymes, we have redubbed FAM86A and Yjr129c as eEF2-KMT and Efm3, respectively.
Journal of Protein Chemistry | 1995
Marcin Wasylewski; Jędrzej Małecki; Zygmunt Wasylewski
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.
PLOS ONE | 2015
Magnus E. Jakobsson; Erna Davydova; Jędrzej Małecki; Anders Moen; Pål Ø. Falnes
The human methyltransferases (MTases) METTL21A and VCP-KMT (METTL21D) were recently shown to methylate single lysine residues in Hsp70 proteins and in VCP, respectively. The yet uncharacterized MTase encoded by the YNL024C gene in Saccharomyces cerevisiae shows high sequence similarity to METTL21A and VCP-KMT, as well as to their uncharacterized paralogues METTL21B and METTL21C. Despite being most similar to METTL21A, the Ynl024c protein does not methylate yeast Hsp70 proteins, which were found to be unmethylated on the relevant lysine residue. Eukaryotic translation elongation factor eEF1A in yeast has been reported to contain four methylated lysine residues (Lys30, Lys79, Lys318 and Lys390), and we here show that the YNL024C gene is required for methylation of eEF1A at Lys390, the only of these methylations for which the responsible MTase has not yet been identified. Lys390 was found in a partially monomethylated state in wild-type yeast cells but was exclusively unmethylated in a ynl024cΔ strain, and over-expression of Ynl024c caused a dramatic increase in Lys390 methylation, with trimethylation becoming the predominant state. Our results demonstrate that Ynl024c is the enzyme responsible for methylation of eEF1A at Lys390, and in accordance with prior naming of similar enzymes, we suggest that Ynl024c is renamed to Efm6 (Elongation factor MTase 6).
Nucleic Acids Research | 2017
Jędrzej Małecki; Vinay Kumar Aileni; Angela Y. Y. Ho; Juliane P. Schwarz; Anders Moen; Vigdis Sørensen; Benedikt S. Nilges; Magnus E. Jakobsson; Sebastian A. Leidel; Pål Ø. Falnes
Abstract Lysine methylation is abundant on histone proteins, representing a dynamic regulator of chromatin state and gene activity, but is also frequent on many non-histone proteins, including eukaryotic elongation factor 1 alpha (eEF1A). However, the functional significance of eEF1A methylation remains obscure and it has remained unclear whether eEF1A methylation is dynamic and subject to active regulation. We here demonstrate, using a wide range of in vitro and in vivo approaches, that the previously uncharacterized human methyltransferase METTL21B specifically targets Lys-165 in eEF1A in an aminoacyl-tRNA- and GTP-dependent manner. Interestingly, METTL21B-mediated eEF1A methylation showed strong variation across different tissues and cell lines, and was induced by altering growth conditions or by treatment with certain ER-stress-inducing drugs, concomitant with an increase in METTL21B gene expression. Moreover, genetic ablation of METTL21B function in mammalian cells caused substantial alterations in mRNA translation, as measured by ribosomal profiling. A non-canonical function for eEF1A in organization of the cellular cytoskeleton has been reported, and interestingly, METTL21B accumulated in centrosomes, in addition to the expected cytosolic localization. In summary, the present study identifies METTL21B as the enzyme responsible for methylation of eEF1A on Lys-165 and shows that this modification is dynamic, inducible and likely of regulatory importance.
Nucleic Acids Research | 2017
Magnus E. Jakobsson; Jędrzej Małecki; Benedikt S. Nilges; Anders Moen; Sebastian A. Leidel; Pål Ø. Falnes
Abstract Many cellular proteins are methylated on lysine residues and this has been most intensively studied for histone proteins. Lysine methylations on non-histone proteins are also frequent, but in most cases the functional significance of the methylation event, as well as the identity of the responsible lysine (K) specific methyltransferase (KMT), remain unknown. Several recently discovered KMTs belong to the so-called seven-β-strand (7BS) class of MTases and we have here investigated an uncharacterized human 7BS MTase currently annotated as part of the endothelin converting enzyme 2, but which should be considered a separate enzyme. Combining in vitro enzymology and analyzes of knockout cells, we demonstrate that this MTase efficiently methylates K36 in eukaryotic translation elongation factor 1 alpha (eEF1A) in vitro and in vivo. We suggest that this novel KMT is named eEF1A-KMT4 (gene name EEF1AKMT4), in agreement with the recently established nomenclature. Furthermore, by ribosome profiling we show that the absence of K36 methylation affects translation dynamics and changes translation speed of distinct codons. Finally, we show that eEF1A-KMT4 is part of a novel family of human KMTs, defined by a shared sequence motif in the active site and we demonstrate the importance of this motif for catalytic activity.
Journal of Biological Chemistry | 2016
Jędrzej Małecki; Helge-André Dahl; Anders Moen; Erna Davydova; Pål Ø. Falnes
Human METTL20 is a mitochondrial, lysine-specific methyltransferase that methylates the β-subunit of electron transfer flavoprotein (ETFβ). Interestingly, putative METTL20 orthologues are found in a subset of α-proteobacteria, including Agrobacterium tumefaciens. Using an activity-based approach, we identified in bacterial extracts two substrates of recombinant METTL20 from A. tumefaciens (AtMETTL20), namely ETFβ and the ribosomal protein RpL7/L12. We show that AtMETTL20, analogous to the human enzyme, methylates ETFβ on Lys-193 and Lys-196 both in vitro and in vivo. ETF plays a key role in mediating electron transfer from various dehydrogenases, and we found that its electron transferring ability was diminished by AtMETTL20-mediated methylation of ETFβ. Somewhat surprisingly, AtMETTL20 also catalyzed monomethylation of RpL7/L12 on Lys-86, a common modification also found in many bacteria that lack METTL20. Thus, we here identify AtMETTL20 as the first enzyme catalyzing RpL7/L12 methylation. In summary, here we have identified and characterized a novel bacterial lysine-specific methyltransferase with unprecedented dual substrate specificity within the seven β-strand class of lysine-specific methyltransferases, as it targets two apparently unrelated substrates, ETFβ and RpL7/L12. Moreover, the present work establishes METTL20-mediated methylation of ETFβ as the first lysine methylation event occurring in both bacteria and humans.
Haematologica | 2016
Agnieszka Malecka; Gunhild Trøen; Anne Tierens; Ingunn Østlie; Jędrzej Małecki; Ulla Randen; Sigbjørn Berentsen; Geir E. Tjønnfjord; Jan Delabie
Immunoglobulin heavy chain ( IGH ) and light chain gene sequences of 27 patients with primary cold agglutinin disease (CAD) were studied to find features explaining the heterogeneity of clinical presentation and disease activity. CAD is a hemolytic anemia mediated by monoclonal IgM anti-I