Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where András Polyák is active.

Publication


Featured researches published by András Polyák.


Journal of Agricultural and Food Chemistry | 2008

Absorption, uptake and tissue affinity of high-molecular-weight hyaluronan after oral administration in rats and dogs

Lajos Balogh; András Polyák; Domokos Máthé; Réka Király; Juliana Thuroczy; Marian Terez; Gyozo A. Jánoki; Yaoting Ting; Luke Bucci; Alexander G. Schauss

The purpose of this study was to determine the absorption, distribution and excretion of (99m)technetium-labeled, high-molecular-weight hyaluronan (((99m)Tc-HA) and (99m)technetium pertechnetate ((99m)Tc-P) after single dose, oral administration to Wistar rats and Beagle dogs. A pilot study utilized (99m)Tc-HA alone, and a second confirmatory study compared uptake of labeled (99m)Tc-HA with (99m)Tc-P. Urinary and fecal excretion after (99m)Tc-HA ingestion by rats showed 86.7-95.6% of radioactivity was recovered, almost all in feces. All tissues examined showed incorporation of radioactivity from (99m)Tc-HA starting at 15 min and persisting for 48 h, in a pattern significantly different from (99m)Tc-P. Whole-body scintigraphs and close-ups of the ventral chest region showed nonalimentary radioactivity from (99m)Tc-HA concentrated in joints, vertebrae and salivary glands four hours after administration. Autoradiography of skin, bone and joint tissue pieces after 24 h showed incorporation of radioactivity from (99m)Tc-HA, but not from (99m)Tc-P. Conversely, absorption, distribution and excretion of (99m)Tc was completely different from (99m)Tc-HA, showing an expected pattern of rapid absorption and excretion in urine, with accumulation in thyroid glands, stomach, kidney and bladder. This report presents the first evidence for uptake and distribution to connective tissues of orally administered, high-molecular-weight HA.


Cancer Biotherapy and Radiopharmaceuticals | 2008

177Lu-EDTMP: A Viable Bone Pain Palliative in Skeletal Metastasis

Sudipta Chakraborty; Tapas Das; Sharmila Banerjee; Lajos Balogh; Pradip Chaudhari; Haladhar Dev Sarma; András Polyák; Domokos Máthé; Meera Venkatesh; Gyozoo Janoki; M. R. A. Pillai

Designing ideal radiopharmaceuticals for use as bone pain palliatives require the use of a moderate energy beta() emitter as a radionuclide and a suitable polyaminophosphonic acid as a carrier molecule. Owing to its suitable decay characteristics [T(1/2) = 6.73 d, E((max)) = 497 keV, E() = 113 keV (6.4%), 208 keV (11%)] as well as the feasibility of large-scale production in adequate specific activity and radionuclidic purity using a moderate flux reactor, 177Lu could be considered as a promising radionuclide for palliative care in painful bone metastasis. The present study was therefore, oriented toward the preparation and biologic evaluation of 177Lu complex of ethylenediaminetetramethylene phosphonic acid (EDTMP) in various animal models, with an aim to prepare a viable radiopharmaceutical for bone pain palliation. 177Lu was produced with a specific activity of approximately 12 GBq/mg (approximately 324 mCi/mg) and radionuclidic purity of 99.98% by irradiation of natural Lu2O3 targeted at a thermal neutron flux of approximately 6 x 10(13) n/cm(2).s for 21 days. 177Lu-EDTMP complex was prepared in high-yield and excellent radiochemical purity (>99%), using EDTMP synthesized and characterized in-house. The complex exhibited excellent in vitro stability at room temperature. Biodistribution studies in Wistar rats showed a rapid skeletal accumulation of injected activity [(1.74 +/- 0.30)% per gram in femur at 3 hours postinjection] with a fast clearance from blood and minimal uptake in any of the major organs. Scintigraphic imaging studies carried out in normal Wistar rats, New Zealand white rabbits, as well as in Beagle dogs also demonstrated significant accumulation of the agent in the skeleton and almost no retention of activity in any other vital organs.


Nuclear Medicine and Biology | 2010

Multispecies animal investigation on biodistribution, pharmacokinetics and toxicity of 177Lu-EDTMP, a potential bone pain palliation agent

Domokos Máthé; Lajos Balogh; András Polyák; Réka Király; Teréz Márián; Dariusz Pawlak; John Zaknun; M. R. A. Pillai; Győző Jánoki

INTRODUCTION Radionuclide therapy (RNT) is an effective method for bone pain palliation in patients suffering from bone metastasis. Due to the long half-life, easy production and relatively low beta- energy, (177)Lu [T(1/2)=6.73 days, E(beta max)=497 keV, E(gamma)=113 keV (6.4%), 208 keV (11%)]-based radiopharmaceuticals offer logistical advantage for wider use. This paper reports the results of a multispecies biodistribution and toxicity studies of (177)Lu-EDTMP to collect preclinical data for starting human clinical trials. METHODS (177)Lu-EDTMP with radiochemical purity greater than 99% was formulated by using a lyophilized kit of EDTMP (35 mg of EDTMP, 5.72 g of CaO and 14.1 mg of NaOH). Biodistribution studies were conducted in mice and rabbits. Small animal imaging was performed using NanoSPECT/CT (Mediso, Ltd., Hungary) and digital autoradiography. Gamma camera imaging was done in rabbits and dogs. Four levels of activity (9.25 through 37 MBq/kg body weight) of (177)Lu-EDTMP were injected in four groups of three dogs each to study the toxicological effects. RESULTS (177)Lu-EDTMP accumulated almost exclusively in the skeletal system (peak ca. 41% of the injected activity in bone with terminal elimination half-life of 2130 and 1870 h in mice and rabbits, respectively) with a peak uptake during 1-3 h. Excretion of the radiopharmaceutical was through the urinary system. Imaging studies showed that all species (mouse, rat, rabbit and dog) take up the compound in regions of remodeling bone, while kidney retention is not visible after 1 day postinjection (pi). In dogs, the highest applied activity (37 MBq/kg body weight) led to a moderate decrease in platelet concentration (mean, 160 g/L) at 1 week pi with no toxicity. CONCLUSION The protracted effective half-life of (177)Lu-EDTMP in bone supports that modifying the EDTMP molecule by introducing (177)Lu does not alter its biological behaviour as a specific bone-seeking tracer. Species-specific pharmacokinetic behavior differences were observed. Toxicity studies in dogs did not show any biological adverse effects. The studies demonstrate that (177)Lu-EDTMP is a promising radiopharmaceutical that can be further evaluated for establishing as a radiopharmaceutical for human use.


International Journal of Pharmaceutics | 2013

99mTc-labelled nanosystem as tumour imaging agent for SPECT and SPECT/CT modalities

András Polyák; István Hajdu; Magdolna Bodnár; György Trencsényi; Zita Pöstényi; Veronika Haász; Gergely Jánoki; Győző Jánoki; Lajos Balogh; János Borbély

We report the synthesis, in vitro and in vivo investigation of folate-targeted, biocompatible, biodegradable self-assembled nanoparticles radiolabelled with (99m)Tc, as potential new SPECT or SPECT/CT imaging agent. Nanoparticles with hydrodynamic size in the range of 75-200 nm were prepared by self-assembly of chitosan and folated poly-γ-glutamic acid, and then radiolabelled with (99m)Tc. The nanoparticles target tumour cells overexpressing folate receptors and internalize specifically into them to realize early tumour diagnosis detected by SPECT and SPECT/CT modalities. Rat hepatocellular carcinoma cells were used as model system. Cell specificity and tumour targeting efficacy of these nanosystems were investigated in vitro, and in vivo using SPECT and fusion nanoSPECT/CT imaging. In vitro results showed that the radiolabeled nanosystem was efficiently internalized by tumour cells. Whole-body biodistribution of the new radiolabelled, folate-targeted nanoparticles revealed higher uptake in the tumorous kidney compared to the non-tumorous contralateral side. Uptake by the lungs and thyroids was negligible, which confirmed the stability of the nanoparticles in vivo. In vivo SPECT and SPECT/CT imaging visually reinforced the uptake results and were in accordance with the biodistribution data: the new nanoparticles as a targeted contrast agent improve tumour targeting and are able to detect folate-receptor-overexpressing tumours in animal models with enhanced contrast.


International Journal of Pharmaceutics | 2014

Folate receptor targeted self-assembled chitosan-based nanoparticles for SPECT/CT imaging: Demonstrating a preclinical proof of concept

András Polyák; István Hajdu; Magdolna Bodnár; Gabriella Dabasi; Róbert Péter Jóba; János Borbély; Lajos Balogh

A new biocompatible, biodegradable, self-assembled chitosan-based nanoparticulate product was successfully synthesized and radiolabeled with technetium-99m, and studied as a potential new SPECT or SPECT/CT imaging agent for diagnosis of folate receptor overexpressing tumors. In the present study we examined the conditions of a preclinical application of this labeled nanosystem in early diagnosis of spontaneously diseased veterinary patient using a human SPECT/CT device. The results confirmed that the nanoparticles accumulated in tumor cells overexpressing folate receptors, contrast agent revealed higher uptake in the tumor for a long time. Preclinical trials verified that the new nanoparticles are able to detect folate-receptor-overexpressing tumors in spontaneously diseased animal models with enhanced contrast.


Nuclear Medicine Review | 2011

In vitro and biodistribution examinations of Tc-99m-labelled doxorubicin-loaded nanoparticles

András Polyák; Elena Alina Palade; Lajos Balogh; Zita Pöstényi; Veronika Haász; Gergely Jánoki; Gyozo A. Jánoki

BACKGROUND Nanoparticles represent promising drug carrier systems. In the case of cytostatics such as doxorubicin, carrier colloid systems as human serum albumin (HSA) nanoparticles, may increase their therapeutic efficiency and decrease their side-effects (toxicity) and any potential multidrug resistance. In the present study, doxorubicin, as a widely used antineoplastic agent, was incorporated into the matrix of human serum albumin and three different particle-sized doxorubicin-loaded HSA nanoparticles were prepared, using a previously described desolvation method. Our objective was to find out if different particle sizes of colloid carriers can allow regarding the given cytostatic agent. MATERIAL AND METHODS The three prepared nanoparticles were labelled using technetium (Tc-99m) and were tested for their physicochemical colloidal quality, fluctuations, and radiochemical stability. Biodistribution of different-sized radiolabelled colloids were determined by means of scintigraphic imaging studies in healthy male Wistar rats. Images were taken by gamma camera at several times and organ uptakes were estimated by quantitative ROI analysis. RESULTS In vitro measurements showed that more than 95% of doxorubicin proportion was permanently adsorbed to human serum albumin. Radiolabelled doxorubicin-loaded particles had high-degree and durable labelling efficiency and particle size stability. Biodistribution results had a close correlation to earlier described results of radiocolloids in similar particle size ranges. In vivo examinations verified that colloid carriers have insignificant size fluctuations after an intravenous application and they show the proper distribution according to their particle size. CONCLUSIONS Our investigations verified that different and stable particle sizes make drug carrier HSA nanoparticles possible to apply different drug targeting in a potential clinical use.


Cancer Biotherapy and Radiopharmaceuticals | 2015

Lu-177-Labeled Zirconia Particles for Radiation Synovectomy

András Polyák; Lívia Nagy; Eszter Drotár; Gabriella Dabasi; Róbert Péter Jóba; Zita Pöstényi; Renata Mikolajczak; Attila Bóta; Lajos Balogh

The present article describes the preparation of β-emitter lutetium-177-labeled zirconia colloid and its preliminary physicochemical and biological evaluation of suitability for local radionuclide therapy. The new (177)Lu-labeled therapeutic radiopharmaceutical candidate was based on the synthesis mode of a previously described zirconia nanoparticle system. The size and shape of the developed radiopharmaceutical compound were observed through a scanning electron microscope and dynamic light scattering methods. The radiocolloid had a 1.7 μm mean diameter and showed high in vitro radiochemical and colloid size stability at room temperature and during the blood sera stability test. After the in vitro characterizations, the product was investigated in the course of the treatment of a spontaneously diseased dog veterinary patients hock joint completed with single-photon emission computed tomography (SPECT) imaging follow-up measurements and a dual-isotope SPECT imaging tests with conventional (99m)Tc-methanediphosphonic acid bone scintigraphy. In the treated dog, no clinical side-effects or signs of histopathological changes of the joints were recorded during the treatment. SPECT follow-up studies clearly and conspicuously showed the localization of the (177)Lu-labeled colloid in the hock joint as well as detectable but negligible leakages of the radiocolloid in the nearest lymph node. On the basis of biological follow-up tests, the orthopedic team assumed that the (177)Lu-labeled zirconia colloid-based local radionuclide therapy resulted in a significant and long-term improvement in clinical signs of the patient without any remarkable side-effects.


Journal of Cancer Research and Therapeutics | 2016

Temperature increase induced by modulated electrohyperthermia (oncothermia®) in the anesthetized pig liver

Lajos Balogh; András Polyák; Zita Pöstényi; Veronika Kovács-Haász; Miklós Gyöngy; Julianna Thuróczy

AIM OF STUDY Is to show the intrahepatic temperature development in anesthetized pig. MATERIALS AND METHODS Temperature development in the liver of anesthetized pig is measured to study the thermal effects of capacitive coupled energy transfer. The treatment was made by modulated electrohyperthermia (mEHT, trade name: oncothermia ®), controlled by a fluoroptical temperature sensing positioned by the ultrasound-guided process. Various fits of coupling were studied. RESULTS The intrahepatic temperature at the end of the treatment ranged 40.5-44.8°C, while the skin temperature ranged 36.8-41.8°C depending on the coupling arrangement. CONCLUSION mEHT is a feasible method to deliver deep heat to the liver of an anesthetized pig.


Molecular Pharmaceutics | 2017

177Lu Labeled Cyclic Minigastrin Analogues with Therapeutic Activity in CCK2R Expressing Tumors: Preclinical Evaluation of a Kit Formulation

Christine Rangger; Maximilian Klingler; Lajos Balogh; Zita Pöstényi; András Polyák; Dariusz Pawlak; Renata Mikolajczak; Elisabeth von Guggenberg

Minigastrin (MG) analogues specifically target cholecystokinin-2 receptors (CCK2R) expressed in different tumors and enable targeted radiotherapy of advanced and disseminated disease when radiolabeled with a beta emitter such as 177Lu. Especially truncated MG analogues missing the penta-Glu sequence are associated with low kidney retention and seem therefore most promising for therapeutic use. Based on [d-Glu1,desGlu2-6]MG (MG11) we have designed the two cyclic MG analogues cyclo1,9[γ-d-Glu1,desGlu2-6,d-Lys9]MG (cyclo-MG1) and cyclo1,9[γ-d-Glu1,desGlu2-6,d-Lys9,Nle11]MG (cyclo-MG2). In the present work we have developed and preclinically evaluated a pharmaceutical kit formulation for the labeling with 177Lu of the two DOTA-conjugated cyclic MG analogues. The stability of the kits during storage as well as the stability of the radiolabeled peptides was investigated. A cell line stably transfected with human CCK2R and a control cell line without receptor expression were used for in vitro and in vivo studies with the radioligands prepared from kit formulations. In terms of stability 177Lu-DOTA-cyclo-MG2 showed advantages over 177Lu-DOTA-cyclo-MG1. Still, for both radioligands a high receptor-mediated cell uptake and favorable pharmacokinetic profile combining receptor-specific tumor uptake with low unspecific tissue uptake and low kidney retention were confirmed. Investigating the therapy efficacy and treatment toxicity in xenografted BALB/c nude mice a receptor-specific and comparable therapeutic effect could be demonstrated for both radioligands. A 1.7- to 2.6-fold increase in tumor volume doubling time was observed for receptor-positive tumors in treated versus untreated animals, which was 39-73% higher when compared to receptor-negative tumors. The treatment was connected with transient bone marrow toxicity and minor signs of kidney toxicity. All together the obtained results support further studies for the clinical translation of this new therapeutic approach.


Journal of Pharmaceutical and Biomedical Analysis | 2015

Distribution of N-methyl-14C-labeled selegiline in the rat

Kornélia Tekes; Zita Pöstényi; Erzsébet B. Faigl; K. Magyar; András Polyák; György Trencsényi; Lajos Balogh; Huba Kalász

Tissue distribution of selegiline including N-methyl-(14)C-selegiline was studied with three different techniques. Whole body autoradiography of labeled selegiline in rats completed the former results obtained in mice. Counting radioactivity by liquid scintillation method in various body compartments gave an in-depth numerical estimation of distribution, while RP-HPLC determination of selegiline determined the fate of intact, non-metabolized parent compound. Whole body autoradiography following 15 and 60 min of intraperitoneal application of N-methyl-(14)C-selegiline verified definite and time-dependent blood-brain penetration of selegiline. Quantitative determination of tissue concentrations by liquid scintillation and RP-HPLC methods following 5, 15, 60 and 180 min of intraperitoneal administration of selegiline unanimously verified both blood-brain and blood-testis penetration of the compound through the barrier.

Collaboration


Dive into the András Polyák's collaboration.

Top Co-Authors

Avatar

Lajos Balogh

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge