Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Conjusteau is active.

Publication


Featured researches published by André Conjusteau.


Journal of Biomedical Optics | 2009

Laser optoacoustic imaging system for detection of breast cancer

Sergey A. Ermilov; Tuenchit Khamapirad; André Conjusteau; Morton H. Leonard; Ron Lacewell; Ketan Mehta; Tom Miller; Alexander A. Oraevsky

We designed, fabricated and tested the laser optoacoustic imaging system for breast cancer detection (LOIS-64), which fuses optical and acoustic imaging techniques in one modality by utilizing pulsed optical illumination and ultrawide-band ultrasonic detection of resulting optoacoustic (OA) signals. The system was designed to image a single breast slice in craniocaudal or mediolateral projection with an arc-shaped array of 64 ultrawide-band acoustic transducers. The system resolution on breast phantoms was at least 0.5 mm. The single-channel sensitivity of 1.66 mVPa was estimated to be sufficient for single-pulse imaging of 6 to 11 mm tumors through the whole imaging slice of the breast. The implemented signal processing using the wavelet transform allowed significant reduction of the low-frequency (LF) acoustic noise, allowed localization of the optoacoustic signals from tumors, and enhanced the contrast and sharpened the boundaries of the optoacoustic images of the tumors. During the preliminary clinical studies on 27 patients, the LOIS-64 was able to visualize 18 out of 20 malignant lesions suspected from mammography and ultrasound images and confirmed by the biopsy performed after the optoacoustic tomography (OAT) procedure.


Journal of Biomedical Optics | 2009

Whole-body three-dimensional optoacoustic tomography system for small animals

Hans-Peter Brecht; Richard Su; Matthew P. Fronheiser; Sergey A. Ermilov; André Conjusteau; Alexander A. Oraevsky

We develop a system for three-dimensional whole-body optoacoustic tomography of small animals for applications in preclinical research. The tomographic images are obtained while the objects of study (phantoms or mice) are rotated within a sphere outlined by a concave arc-shaped array of 64 piezocomposite transducers. Two pulsed lasers operating in the near-IR spectral range (755 and 1064 nm) with an average pulsed energy of about 100 mJ, a repetition rate of 10 Hz, and a pulse duration of 15 to 75 ns are used as optical illumination sources. During the scan, the mouse is illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. The system is capable of generating images of individual organs and blood vessels through the entire body of a mouse with spatial resolution of approximately 0.5 mm.


Journal of Biomedical Optics | 2010

Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature

Matthew P. Fronheiser; Sergey A. Ermilov; Hans-Peter Brecht; André Conjusteau; Richard Su; Ketan Mehta; Alexander A. Oraevsky

We present our findings from a real-time laser optoacoustic imaging system (LOIS). The system utilizes a Q-switched Nd:YAG laser; a standard 128-channel ultrasonic linear array probe; custom electronics and custom software to collect, process, and display optoacoustic (OA) images at 10 Hz. We propose that this system be used during preoperative mapping of forearm vessels for hemodialysis treatment. To demonstrate the real-time imaging capabilities of the system, we show OA images of forearm vessels in a volunteer and compare our results to ultrasound images of the same region. Our OA images show blood vessels in high contrast. Manipulations with the probe enable us to locate and track arteries and veins of a forearm in real time. We also demonstrate the ability to combine a series of OA image slices into a volume for spatial representation of the vascular network. Finally, we use frame-by-frame analysis of the recorded OA video to measure dynamic changes of the crossection of the ulnar artery.


Photons Plus Ultrasound: Imaging and Sensing 2009 | 2009

Development of laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld array probes

Sergey A. Ermilov; Matthew P. Fronheiser; Hans Peter Brecht; Richard Su; André Conjusteau; Ketan Mehta; Pamela M Otto; Alexander A. Oraevsky

We describe two laser optoacoustic imaging systems for breast cancer detection based on arrays of acoustic detectors operated manually in a way similar to standard ultrasonic breast imaging. The systems have the advantages of standard light illumination (regardless of the interrogated part of the breast), the ability to visualize any part of the breast, and convenience in operation. The first system could work in both ultrasonic and optoacoustic mode, and was developed based on a linear ultrasonic breast imaging probe with two parallel rectangular optical bundles. We used it in a pilot clinical study to provide for the first time demonstration that the boundaries of the tumors visualized on the optoacoustic and ultrasonic images matched. Such correlation of coregistered images proves that the objects on both images represented indeed the same tumor. In the optoacoustic mode we were also able to visualize blood vessels located in the neighborhood of the tumor. The second system was proposed as a circular array of acoustic transducers with an axisymmetric laser beam in the center. It was capable of 3D optoacoustic imaging with minimized optoacoustic artifacts caused by the distribution of the absorbed optical energy within the breast tissue. The distribution of optical energy absorbed in the bulk tissue of the breast was removed from the image by implementing the principal component analysis on the measured signals. The computer models for optoacoustic imaging using these two handheld probes were developed. The models included three steps: (1) Monte Carlo simulations of the light distribution within the breast tissue, (2) generation of optoacoustic signals by convolving N-shaped pressure signals from spherical voxels with the shape of individual transducers, and (3) back-projecting processed optoacoustic signals onto spherical surfaces for image reconstruction. Using the developed models we demonstrated the importance of the included spatial impulse response of the optoacoustic imaging system.


Journal of Biomedical Optics | 2010

Optoacoustic imaging of the prostate: development toward image-guided biopsy.

Mohammad A. Yaseen; Sergey A. Ermilov; Hans-Peter Brecht; Richard Su; André Conjusteau; Matthew P. Fronheiser; Brent Bell; Massoud Motamedi; Alexander A. Oraevsky

Optoacoustic (OA) tomography has demonstrated utility in identifying blood-rich malignancies in breast tissue. We describe the development and characterization of a laser OA imaging system for the prostate (LOIS-P). The system consists of a fiber-coupled Q-switched laser operating at 757 nm, a commercial 128-channel ultrasonic probe, a digital signal processor, and software that uses the filtered radial back-projection algorithm for image reconstruction. The system is used to reconstruct OA images of a blood-rich lesion induced in vivo in a canine prostate. OA images obtained in vivo are compared to images acquired using ultrasound, the current gold standard for guiding biopsy of the prostate. Although key structural features such as the urethra could be identified with both imaging techniques, a bloody lesion representing a highly vascularized tumor could only be clearly identified in OA images. The advantages and limitations of both forward and backward illumination modes are also evaluated by collecting OA images of phantoms simulating blood vessels within tissue. System resolution is estimated to be 0.2 mm in the radial direction of the acoustic array. The minimum detectable pressure signal is 1.83 Pa. Our results encourage further development toward a dual-modality OA/ultrasonic system for prostate imaging and image-guided biopsy.


Review of Scientific Instruments | 2009

Measurement of the spectral directivity of optoacoustic and ultrasonic transducers with a laser ultrasonic source

André Conjusteau; Sergey A. Ermilov; Richard Su; Hans-Peter Brecht; Matthew P. Fronheiser; Alexander A. Oraevsky

Comprehensive characterization of wideband ultrasonic transducers and specifically optoacoustic detectors is achieved through the analysis of their frequency response as a function of the incident angle. The tests are performed under well-defined, repeatable operating conditions. Backillumination of a blackened, acoustically matched planar surface with a short laser pulse creates an acoustic impulse which is used as a wideband ultrasonic source. Upon illumination with a short laser pulse, the bandwidth of our source shows a -6 dB point of 12 MHz and a low-frequency roll-off around 300 kHz. Using proprietary software, we examine thoroughly the planarity of the emitted wave front within a specified amplitude cutoff and phase incoherence. Analysis of the angular dependence of the frequency response yields invaluable directivity information about the detector under study: a necessary component toward accurate optoacoustic image reconstruction and quantitative tomography. The laser ultrasonic source we developed is the main feature of our directivity measurement setup. Due to its simplicity, it can easily be adapted to various calibration devices. This paper focuses on the development and characterization of the flatness and the bandwidth of our wideband ultrasonic source.


Optics Express | 2013

Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions

Elena V. Petrova; Sergey A. Ermilov; Richard Su; Vyacheslav Nadvoretskiy; André Conjusteau; Alexander A. Oraevsky

Grüneisen parameter is a key temperature-dependent physical characteristic responsible for thermoelastic efficiency of materials. We propose a new methodology for accurate measurements of temperature dependence of Grüneisen parameter in optically absorbing solutions. We use two-dimensional optoacoustic (OA) imaging to improve accuracy of measurements. Our approach eliminates contribution of local optical fluence and absorbance. To validate the proposed methodology, we studied temperature dependence of aqueous cupric sulfate solutions in the range from 22 to 4 °C. Our results for the most diluted salt perfectly matched known temperature dependence for the Grüneisen parameter of water. We also found that Grüneisen-temperature relationship for cupric sulfate exhibits linear trend with respect to the concentration. In addition to accurate measurements of Grüneisen changes with temperature, the developed technique provides a basis for future high precision OA temperature monitoring in live tissues.


Proceedings of SPIE | 2007

Detection and noninvasive diagnostics of breast cancer with two-color laser optoacoustic imaging system

Sergey A. Ermilov; Alan Stein; André Conjusteau; Reda Gharieb; Ron Lacewell; Tom Miller; Scott M. Thompson; Pamela M Otto; Barbara M McCorvey; Tuenchit Khamapirad; Morton H. Leonard; Alexander A. Oraevsky

We have designed, fabricated and tested a new laser optoacoustic imaging system (LOIS-64/16) for quantitative optoacoustic tomography of breast cancer. The system was designed to create a single slice of an optoacoustic image of the breast with 64 ultrawide band acoustic transducers. Other 16 transducers on the back of the acoustic probe were used to reconstruct the light distribution inside the breast. The system resolution was at least 0.5 mm for high-aspect-ratio objects. Maximum system sensitivity was 4.8 mV/Pa and the RMS noise of 3.1 mV, which allowed imaging of small (less than 1 cm) tumors at depths over 3 cm. The directivity of the optoacoustic transducers used in LOIS-64/16 assured that the signal detection was better than 70% of the maximum for about 75% of the imaging slice and reduced quickly for signals coming from out of the imaging slice. Implemented signal processing allowed significant reduction of the low-frequency acoustic noise and localizing the small OA signals. The system was able to differentiate phantoms mimicking tumors and malformations visualized in clinics based on the contrast and morphology of their images obtained at 1064 nm and 757 nm.


Biomedical optics | 2006

Metallic nanoparticles as optoacoustic contrast agents for medical imaging

André Conjusteau; Sergey A. Ermilov; Dmitri O. Lapotko; Hongwei Liao; Jason H. Hafner; Mohammad Eghtedari; Massoud Motamedi; Nicholas A. Kotov; Alexander A. Oraevsky

A contrast agent for optoacoustic imaging and laser therapy of early tumors is being developed based on gold nanocolloids strongly absorbing visible and near-infrared light. The optoacoustic signals obtained from gold nanospheres and gold nanorods solutions are studied. In the case of 100 nm nanospheres as an example, a sharp increase in the total area under the curve of the optoacoustic signal is observed when the laser fluence is increased beyond a threshold value of about 0.1 J/cm2. The change in the optoacoustic signal profile is attributed to the formation of water vapor bubbles around heated nanoparticles, as evidenced via thermoacoustic microscopy experiments. It has been determined that, surprisingly, gold nanoparticles fail to generate detectable nanobubbles upon irradiation at the laser fluence of ~2 mJ/cm2, which heats the nanoparticles up to 374°C, the critical temperature of water. Only when the estimated temperature of the particle reaches about 10,000°C, a marked increase of the optoacoustic pressure amplitude and a changed profile of the optoacoustic signals indicate nanobubble formation. A nanoparticle based contrast agent is the most effective if it can be activate by laser pulses with low fluence attainable in the depth of tissue. With this goal in mind, we develop targeting protocols that form clusters of gold nanocolloid in the target cells in order to lower the bubble formation threshold below the level of optical fluence allowed for safe laser illumination of skin. Experiments and modeling suggest that formation of clusters of nanocolloids may improve the sensitivity of optoacoustic imaging in the detection of early stage tumors.


Journal of Nanomedicine & Nanotechnology | 2012

Biocompatible Gold Nanorod Conjugates for Preclinical Biomedical Research

Anton Liopo; André Conjusteau; Dmitri A. Tsyboulski; Boris Ermolinsky; Alexander V. Kazansky; Alexander A. Oraevsky

Gold nanorods with a peak absorption wavelength of 760 nm were prepared using a seed-mediated method. A novel protocol has been developed to replace hexadecyltrimethylammonium bromide on the surface of the nanorods with 16-mercaptohexadecanoic acid and metoxy-poly(ethylene glycol)-thiol, and the monoclonal antibody HER2. The physical chemistry properties of the conjugates were monitored through optical and zeta-potential measurements to confirm surface chemistry changes. The efficiency of the modifications was quantified through measurement of the average number of antibodies per gold nanorod. The conjugates were investigated for different cells lines: BT-474, MCF7, MCF10, MDCK, and fibroblast. The results show successful cell accumulation of the gold nanorod HER2 conjugates in cells with HER2 overexpression. Incubation of the complexes in heparinized mouse blood demonstrated the low aggregation of the metallic particles through stability of the spectral properties, as verified by UV/VIS spectrometry. Cytotoxicity analysis with LDH release and MTT assay confirms strong targeting and retention of functional activity of the antibody after their conjugation with gold nanorods. Silver staining confirms efficient specific binding to BT-474 cells even in cases where the nanorod complexes were incubated in heparinized mouse blood. This is confirmed through in vivo studies where, following intravenous injection of gold nanorod complexes, silver staining reveals noticeably higher rates of specific binding in mouse tumors than in healthy liver.The conjugates are reproducible, have strong molecular targeting capabilities, have long term stability in vivo and can be used in pre-clinical applications. The conjugates can also be used for molecular and optoacoustic imaging, quantitative sensing of biological substrates, and photothermal therapy.

Collaboration


Dive into the André Conjusteau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton Liopo

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Anastasio

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Fatima Anis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Massoud Motamedi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Pamela M Otto

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge