Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André D. Taylor is active.

Publication


Featured researches published by André D. Taylor.


Nano Letters | 2013

Record High Efficiency Single-Walled Carbon Nanotube/Silicon p–n Junction Solar Cells

Yeonwoong Jung; Xiaokai Li; Nitin K. Rajan; André D. Taylor; Mark A. Reed

Carrier transport characteristics in high-efficiency single-walled carbon nanotubes (SWNTs)/silicon (Si) hybrid solar cells are presented. The solar cells were fabricated by depositing intrinsic p-type SWNT thin-films on n-type Si wafers without involving any high-temperature process for p-n junction formation. The optimized cells showed a device ideality factor close to unity and a record-high power-conversion-efficiency of >11%. By investigating the dark forward current density characteristics with varying temperature, we have identified that the temperature-dependent current rectification originates from the thermally activated band-to-band transition of carriers in Si, and the role of the SWNT thin films is to establish a built-in potential for carrier separation/collection. We have also established that the dominant carrier transport mechanism is diffusion, with minimal interface recombination. This is further supported by the observation of a long minority carrier lifetime of ~34 μs, determined by the transient recovery method. This study suggests that these hybrid solar cells operate in the same manner as single crystalline p-n homojunction Si solar cells.


ACS Nano | 2011

Bulk Metallic Glass Nanowire Architecture for Electrochemical Applications

Marcelo Carmo; Ryan C. Sekol; Shiyan Ding; Golden Kumar; Jan Schroers; André D. Taylor

Electrochemical devices have the potential to pose powerful solutions in addressing rising energy demands and counteracting environmental problems. However, currently, these devices suffer from meager performance due to poor efficiency and durability of the catalysts. These suboptimal characteristics have hampered widespread commercialization. Here we report on Pt(57.5)Cu(14.7)Ni(5.3)P(22.5) bulk metallic glass (Pt-BMG) nanowires, whose novel architecture and outstanding durability circumvent the performance problems of electrochemical devices. We fabricate Pt-BMG nanowires using a facile and scalable nanoimprinting approach to create dealloyed high surface area nanowire catalysts with high conductivity and activity for methanol and ethanol oxidation. After 1000 cycles, these nanowires maintain 96% of their performance-2.4 times as much as conventional Pt/C catalysts. Their properties make them ideal candidates for widespread commercial use such as for energy conversion/storage and sensors.


ACS Nano | 2012

Scalable Fabrication of Multifunctional Freestanding Carbon Nanotube/Polymer Composite Thin Films for Energy Conversion

Xiaokai Li; Forrest S. Gittleson; Marcelo Carmo; Ryan C. Sekol; André D. Taylor

Translating the unique properties of individual single-walled carbon nanotubes (SWNTs) to the macroscale while simultaneously incorporating additional functionalities into composites has been stymied by inadequate assembly methods. Here we describe a technique for developing multifunctional SWNT/polymer composite thin films that provides a fundamental engineering basis to bridge the gap between their nano- and macroscale properties. Selected polymers are infiltrated into a Mayer rod coated conductive SWNT network to fabricate solar cell transparent conductive electrodes (TCEs), fuel cell membrane electrode assemblies (MEAs), and lithium ion battery electrodes. Our TCEs have an outstanding optoelectronic figure of merit σ(dc)/σ(ac) of 19.4 and roughness of 3.8 nm yet are also mechanically robust enough to withstand delamination, a step toward scratch resistance necessary for flexible electronics. Our MEAs show platinum utilization as high as 1550 mW/mg(Pt), demonstrating our techniques ability to integrate ionic conductivity of the polymer with electrical conductivity of the SWNTs at the Pt surface. Our battery anodes, which show reversible capacity of ∼850 mAh/g after 15 cycles, demonstrate the integration of electrode and separator to simplify device architecture and decrease overall weight. Each of these applications demonstrates our techniques ability to maintain the conductivity of SWNT networks and their dispersion within a polymer matrix while concurrently optimizing key complementary properties of the composite. Here, we lay the foundation for the assembly of nanotubes and nanostructured components (rods, wires, particles, etc.) into macroscopic multifunctional materials using a low-cost and scalable solution-based processing technique.


ACS Applied Materials & Interfaces | 2016

Development of Omniphobic Desalination Membranes Using a Charged Electrospun Nanofiber Scaffold

Jong-Ho Lee; Chanhee Boo; Won-Hee Ryu; André D. Taylor; Menachem Elimelech

In this study, we present a facile and scalable approach to fabricate omniphobic nanofiber membranes by constructing multilevel re-entrant structures with low surface energy. We first prepared positively charged nanofiber mats by electrospinning a blend polymer-surfactant solution of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) and cationic surfactant (benzyltriethylammonium). Negatively charged silica nanoparticles (SiNPs) were grafted on the positively charged electrospun nanofibers via dip-coating to achieve multilevel re-entrant structures. Grafted SiNPs were then coated with fluoroalkylsilane to lower the surface energy of the membrane. The fabricated membrane showed excellent omniphobicity, as demonstrated by its wetting resistance to various low surface tension liquids, including ethanol with a surface tension of 22.1 mN/m. As a promising application, the prepared omniphobic membrane was tested in direct contact membrane distillation to extract water from highly saline feed solutions containing low surface tension substances, mimicking emerging industrial wastewaters (e.g., from shale gas production). While a control hydrophobic PVDF-HFP nanofiber membrane failed in the desalination/separation process due to low wetting resistance, our fabricated omniphobic membrane exhibited a stable desalination performance for 8 h of operation, successfully demonstrating clean water production from the low surface tension feedwater.


ACS Nano | 2016

Heterogeneous WSx/WO3 Thorn-Bush Nanofiber Electrodes for Sodium-Ion Batteries

Won-Hee Ryu; Hope Wilson; Sungwoo Sohn; Jinyang Li; Xiao Tong; Evyatar Shaulsky; Jan Schroers; Menachem Elimelech; André D. Taylor

Heterogeneous electrode materials with hierarchical architectures promise to enable considerable improvement in future energy storage devices. In this study, we report on a tailored synthetic strategy used to create heterogeneous tungsten sulfide/oxide core-shell nanofiber materials with vertically and randomly aligned thorn-bush features, and we evaluate them as potential anode materials for high-performance Na-ion batteries. The WSx (2 ≤ x ≤ 3, amorphous WS3 and crystalline WS2) nanofiber is successfully prepared by electrospinning and subsequent calcination in a reducing atmosphere. To prevent capacity degradation of the WSx anodes originating from sulfur dissolution, a facile post-thermal treatment in air is applied to form an oxide passivation surface. Interestingly, WO3 thorn bundles are randomly grown on the nanofiber stem, resulting from the surface conversion. We elucidate the evolving morphological and structural features of the nanofibers during post-thermal treatment. The heterogeneous thorn-bush nanofiber electrodes deliver a high second discharge capacity of 791 mAh g(-1) and improved cycle performance for 100 cycles compared to the pristine WSx nanofiber. We show that this hierarchical design is effective in reducing sulfur dissolution, as shown by cycling analysis with counter Na electrodes.


Energy and Environmental Science | 2013

Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells

Xiaokai Li; Yeonwoong Jung; Kelsey K. Sakimoto; Tenghooi Goh; Mark A. Reed; André D. Taylor

Smooth and aligned single walled carbon nanotube (SWNT) thin films with improved optoelectronic performance are fabricated using a superacid slide casting method. Deposition of as made SWNT thin film on silicon (Si) together with post treatments result in SWNT/Si hybrid solar cells with unprecedented high fill factor of 73.8%, low ideality factor of 1.08 as well as overall dry cell power conversion efficiency of 11.5%.


Nano Letters | 2015

A Mesoporous Catalytic Membrane Architecture for Lithium–Oxygen Battery Systems

Won-Hee Ryu; Forrest S. Gittleson; Mark Schwab; Tenghooi Goh; André D. Taylor

Controlling the mesoscale geometric configuration of catalysts on the oxygen electrode is an effective strategy to achieve high reversibility and efficiency in Li-O2 batteries. Here we introduce a new Li-O2 cell architecture that employs a catalytic polymer-based membrane between the oxygen electrode and the separator. The catalytic membrane was prepared by immobilization of Pd nanoparticles on a polyacrylonitrile (PAN) nanofiber membrane and is adjacent to a carbon nanotube electrode loaded with Ru nanoparticles. During oxide product formation, the insulating PAN polymer scaffold restricts direct electron transfer to the Pd catalyst particles and prevents the direct blockage of Pd catalytic sites. The modified Li-O2 battery with a catalytic membrane showed a stable cyclability for 60 cycles with a capacity of 1000 mAh/g and a reduced degree of polarization (∼ 0.3 V) compared to cells without a catalytic membrane. We demonstrate the effects of a catalytic membrane on the reaction characteristics associated with morphological and structural features of the discharge products via detailed ex situ characterization.


Small | 2013

Bulk Metallic Glass Micro Fuel Cell

Ryan C. Sekol; Golden Kumar; Marcelo Carmo; Forrest S. Gittleson; Nathan Hardesty-Dyck; Sundeep Mukherjee; Jan Schroers; André D. Taylor

Micro fuel cells (MFC) have been identifi ed as promising alternative power sources for portable electronics. Using noncorrosive electrolytes, they offer high theoretical power densities at low operating temperatures, with the potential for stable long-term operation. [ 1 ] Although these attributes make MFCs attractive for many portable device applications, [ 2 ] the primary design challenge is to identify the most effective lowcost materials and fabrication methods. [ 3 ] Here, we present a micro fuel cell in which the catalyst layer, gas diffusion layer, and fl ow fi elds are fabricated from bulk metallic glass (BMG) using thermoplastic forming (TPF). We show that TPF is a scalable and economical technique, for the fabrication of multi-scale BMG components of a MFC. BMGs have high electrical conductivity [ 4 ] and corrosion resistance, [ 5 ] and we demonstrate that end-plates with serpentine fl ow fi elds can be embossed into Zr 35 Ti 30 Cu 8.25 Be 26.75 (Zr-BMG) through a TPFbased process. The BMG fuel cell embodies the processing advantage of TPF into hierarchical structures involving length scales ranging from nanometers to centimeters, [ 6 ] and signifi es the fabrication of fuel cell components from a single material. We show that a hierarchical architecture fabricated through TPF-based embossing of Pt 57.5 Cu 14.7 Ni 5.3 P 22.5 (Pt-BMG) can function as a high-surface area catalyst as well as a porous gas diffusion layer, which allows us to demonstrate the concept of a metallic glass MFC. The ability to create structures over a wide range of length scales combined with remarkable electrochemical properties, suggests applications beyond MFCs, including sensors, lab-on-a-chip platforms, micro-reactors, and heterogeneous catalysis. [ 7 ]


ACS Applied Materials & Interfaces | 2016

Toward Efficient Thick Active PTB7 Photovoltaic Layers Using Diphenyl Ether as a Solvent Additive

Yifan Zheng; Tenghooi Goh; Pu Fan; Wei Shi; Junsheng Yu; André D. Taylor

The development of thick organic photovoltaics (OPV) could increase absorption in the active layer and ease manufacturing constraints in large-scale solar panel production. However, the efficiencies of most low-bandgap OPVs decrease substantially when the active layers exceed ∼100 nm in thickness (because of low crystallinity and a short exciton diffusion length). Herein, we report the use of solvent additive diphenyl ether (DPE) that facilitates the fabrication of thick (180 nm) active layers and triples the power conversion efficiency (PCE) of conventional thienothiophene-co-benzodithiophene polymer (PTB7)-based OPVs from 1.75 to 6.19%. These results demonstrate a PCE 20% higher than those of conventional (PTB7)-based OPV devices using 1,8-diiodooctane. Morphology studies reveal that DPE promotes the formation of nanofibrillar networks and ordered packing of PTB7 in the active layer that facilitate charge transport over longer distances. We further demonstrate that DPE improves the fill factor and photocurrent collection by enhancing the overall optical absorption, reducing the series resistance, and suppressing bimolecular recombination.


ACS Nano | 2012

Improving the assembly speed, quality, and tunability of thin conductive multilayers.

Forrest S. Gittleson; David Kohn; Xiaokai Li; André D. Taylor

While inhomogeneous thin conductive films have been sought after for their flexibility, transparency, and strength, poor control in the processing of these materials has restricted their application. The versatile layer-by-layer assembly technique allows greater control over film deposition, but even this has been hampered by the traditional dip-coating method. Here, we employ a fully automated spin-spray layer-by-layer system (SSLbL) to rapidly produce high-quality, tunable multilayer films. With bilayer deposition cycle times as low as 13 s (~50% of previously reported) and thorough characterization of film conductance in the near percolation region, we show that SSLbL permits nanolevel control over film growth and efficient formation of a conducting network not available with other methods of multilayer deposition. The multitude of variables from spray time, to spin rate, to active drying available with SSLbL makes films generated by this technique inherently more tunable and expands the opportunity for optimization and application of composite multilayers. A comparison of several polymer-CNT systems deposited by both spin-spray and dip-coating exemplifies the potential of SSLbL assembly to allow for rapid screening of multilayer films. Ultrathin polymer-CNT multilayers assembled by SSLbL were also evaluated as lithium-ion battery electrodes, emphasizing the practical application of this technique.

Collaboration


Dive into the André D. Taylor's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won-Hee Ryu

Sookmyung Women's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge