Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Diedrich is active.

Publication


Featured researches published by André Diedrich.


Hypertension | 2010

Carotid Baroreceptor Stimulation, Sympathetic Activity, Baroreflex Function, and Blood Pressure in Hypertensive Patients

Karsten Heusser; Jens Tank; Stefan Engeli; André Diedrich; Jan Menne; Siegfried Eckert; Timothy J. Peters; Fred C.G.J. Sweep; Hermann Haller; Andreas M. Pichlmaier; Friedrich C. Luft; Jens Jordan

In animals, electric field stimulation of carotid baroreceptors elicits a depressor response through sympathetic inhibition. We tested the hypothesis that the stimulation acutely reduces sympathetic vasomotor tone and blood pressure in patients with drug treatment–resistant arterial hypertension. Furthermore, we tested whether the stimulation impairs the physiological baroreflex regulation. We studied 7 men and 5 women (ages 43 to 69 years) with treatment-resistant arterial hypertension. A bilateral electric baroreflex stimulator at the level of the carotid sinus (Rheos) was implanted ≥1 month before the study. We measured intra-arterial blood pressure, heart rate, muscle sympathetic nerve activity (microneurography), cardiac baroreflex sensitivity (cross-spectral analysis and sequence method), sympathetic baroreflex sensitivity (threshold technique), plasma renin, and norepinephrine concentrations. Measurements were performed under resting conditions, with and without electric baroreflex stimulation, for ≥6 minutes during the same experiment. Intra-arterial blood pressure was 193±9/94±5 mm Hg on medications. Acute electric baroreflex stimulation decreased systolic blood pressure by 32±10 mm Hg (range: +7 to −108 mm Hg; P=0.01). The depressor response was correlated with a muscle sympathetic nerve activity reduction (r2=0.42; P<0.05). In responders, muscle sympathetic nerve activity decreased sharply when electric stimulation started. Then, muscle sympathetic nerve activity increased but remained below the baseline level throughout the stimulation period. Heart rate decreased 4.5±1.5 bpm with stimulation (P<0.05). Plasma renin concentration decreased 20±8% (P<0.05). Electric field stimulation of carotid sinus baroreflex afferents acutely decreased arterial blood pressure in hypertensive patients, without negative effects on physiological baroreflex regulation. The depressor response was mediated through sympathetic inhibition.


Circulation | 2000

The pressor response to water drinking in humans : a sympathetic reflex?

Jens Jordan; John R. Shannon; Bonnie K. Black; Yasmine S. Ali; Mary Farley; Fernando Costa; André Diedrich; Rose Marie Robertson; Italo Biaggioni; David M. Robertson

BACKGROUND Water drinking increases blood pressure profoundly in patients with autonomic failure and substantially in older control subjects. The mechanism that mediates this response is not known. METHODS AND RESULTS We studied the effect of drinking tap water on seated blood pressure in 47 patients with severe autonomic failure (28 multiple system atrophy [MSA], 19 pure autonomic failure patients [PAF]). Eleven older controls and 8 young controls served as control group. We also studied the mechanisms that could increase blood pressure with water drinking. Systolic blood pressure increased profoundly with water drinking, reaching a maximum of 33+/-5 mm Hg in MSA and 37+/-7 in PAF mm Hg after 30 to 35 minutes. The pressor response was greater in patients with more retained sympathetic function and was almost completely abolished by trimethaphan infusion. Systolic blood pressure increased by 11+/-2.4 mm Hg in elderly but not in young controls. Plasma norepinephrine increased in both groups. Plasma renin activity, vasopressin, and blood volume did not change in any group. CONCLUSIONS Water drinking significantly and rapidly raises sympathetic activity. Indeed, it raises plasma norepinephrine as much as such classic sympathetic stimuli as caffeine and nicotine. This effect profoundly increases blood pressure in autonomic failure patients, and this effect can be exploited to improve symptoms due to orthostatic hypotension. Water drinking also acutely raises blood pressure in older normal subjects. The pressor effect of oral water is an important yet unrecognized confounding factor in clinical studies of pressor agents and antihypertensive medications.


Circulation | 1997

Vagal and Sympathetic Mechanisms in Patients With Orthostatic Vasovagal Syncope

Carlos A. Morillo; Kenneth A. Ellenbogen; Larry A. Beightol; Jeffrey B. Hoag; Kari U. O. Tahvanainen; Tom Kuusela; André Diedrich

BACKGROUND Autonomic and particularly sympathetic mechanisms play a central role in the pathophysiology of vasovagal syncope. We report direct measurements of muscle sympathetic nerve activity in patients with orthostatic vasovagal syncope. METHODS AND RESULTS We studied 53 otherwise healthy patients with orthostatic syncope. We measured RR intervals and finger arterial pressures and in 15 patients, peroneal nerve muscle sympathetic activity before and during passive 60 degree head-up tilt, with low-dose intravenous isoproterenol if presyncope did not develop by 15 minutes. We measured baroreflex gain before tilt with regression of RR intervals or sympathetic bursts on systolic or diastolic pressures after sequential injections of nitroprusside and phenylephrine. Orthostatic vasovagal reactions occurred in 21 patients, including 7 microneurography patients. Presyncopal and nonsyncopal patients had similar baseline RR intervals, arterial pressure, and muscle sympathetic nerve activity. Vagal baroreflex responses were significantly impaired at arterial pressures below (but not above) baseline levels in presyncopal patients. Initial responses to tilt were comparable; however, during the final 200 seconds of tilt, presyncopal patients had lower RR intervals and diastolic pressures than nonsyncopal patients and gradual reduction of arterial pressure and sympathetic activity. Frank presyncope began abruptly with precipitous reduction of arterial pressure, disappearance of muscle sympathetic nerve activity, and RR interval lengthening. CONCLUSIONS Patients with orthostatic vasovagal reactions have impaired vagal baroreflex responses to arterial pressure changes below resting levels but normal initial responses to upright tilt. Subtle vasovagal physiology begins before overt presyncope. The final trigger of human orthostatic vasovagal reactions appears to be the abrupt disappearance of muscle sympathetic nerve activity.


Hypertension | 2012

Catheter-Based Renal Nerve Ablation and Centrally Generated Sympathetic Activity in Difficult-to-Control Hypertensive Patients Prospective Case Series

Julia Brinkmann; Karsten Heusser; Bernhard M.W. Schmidt; Jan Menne; Gunnar Klein; Johann Bauersachs; Hermann Haller; Fred C.G.J. Sweep; André Diedrich; Jens Jordan; Jens Tank

Endovascular renal nerve ablation has been developed to treat resistant hypertension. In addition to lowering efferent renal sympathetic activation, the intervention may attenuate central sympathetic outflow through decreased renal afferent nerve traffic, as evidenced by a recent case report. We tested the hypothesis in 12 nonpreselected patients with difficult-to-control hypertension (aged 45–74 years) admitted for renal nerve ablation. All patients received ≥3 antihypertensive medications at full doses, including a diuretic. Electrocardiogram, respiration, brachial and finger arterial blood pressure, and muscle sympathetic nerve activity were recorded before and 3 to 6 months after renal nerve ablation. Heart rate and blood pressure variability were analyzed in the time and frequency domain. Pharmacological baroreflex slopes were determined using the modified Oxford bolus technique. Resting heart rate was 61±3 bpm before and 58±2 bpm after ablation (P=0.4). Supine blood pressure was 157±7/85±4 mm Hg before and 157±6/85±4 mm Hg after ablation (P=1.0). Renal nerve ablation did not change resting muscle sympathetic nerve activity (before, 34±2 bursts per minute; after, 32±3 bursts per minute P=0.6), heart rate variability, or blood pressure variability. Pharmacological baroreflex control of heart rate and muscle sympathetic nerve activity did not change. We conclude that reduced central sympathetic inhibition may be the exception rather than the rule after renal nerve ablation in unselected patients with difficult-to-control arterial hypertension.


The American Journal of Medicine | 2002

Water drinking as a treatment for orthostatic syndromes

John R. Shannon; André Diedrich; Italo Biaggioni; Jens Tank; Rose Marie Robertson; David Robertson; Jens Jordan

PURPOSE Water drinking increases blood pressure in a substantial proportion of patients who have severe orthostatic hypotension due to autonomic failure. We tested the hypothesis that water drinking can be used as a practical treatment for patients with orthostatic and postprandial hypotension, as well as those with orthostatic tachycardia. SUBJECTS AND METHODS We studied the effect of drinking water on seated and standing blood pressure and heart rate in 11 patients who had severe orthostatic hypotension due to autonomic failure and in 9 patients who had orthostatic tachycardia due to idiopathic orthostatic intolerance. We also tested the effect of water drinking on postprandial hypotension in 7 patients who had autonomic failure. Patients drank 480 mL of tap water at room temperature in less than 5 minutes. RESULTS In patients with autonomic failure, mean (+/- SD) blood pressure after 1 minute of standing was 83 +/- 6/53 +/- 3.4 mm Hg at baseline, which increased to 114 +/- 30/66 +/- 18 mm Hg (P <0.01) 35 minutes after drinking. After a meal, blood pressure decreased by 43 +/- 36/20 +/- 13 mm Hg without water drinking, compared with 22 +/- 10/12 +/- 5 mm Hg with drinking (P <0.001). In patients with idiopathic orthostatic intolerance, water drinking attenuated orthostatic tachycardia (123 +/- 23 beats per minute) at baseline to 108 +/- 21 beats per minute after water drinking ( P <0.001). CONCLUSION Water drinking elicits a rapid pressor response in patients with autonomic failure and can be used to treat orthostatic and postprandial hypotension. Water drinking moderately reduces orthostatic tachycardia in patients with idiopathic orthostatic intolerance. Thus, water drinking may serve as an adjunctive treatment in patients with impaired orthostatic tolerance.


The Journal of Physiology | 2002

Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight

Benjamin D. Levine; James A. Pawelczyk; Andrew C. Ertl; James F. Cox; Julie H. Zuckerman; André Diedrich; Italo Biaggioni; Chester A. Ray; Michael L. Smith; Satoshi Iwase; Mitsuru Saito; Yoshiki Sugiyama; Tadaaki Mano; Rong Zhang; Ken-ichi Iwasaki; Lynda D. Lane; Jay C. Buckey; William H. Cooke; Friedhelm J. Baisch; David Robertson; C. Gunnar Blomqvist

Orthostatic intolerance is common when astronauts return to Earth: after brief spaceflight, up to two‐thirds are unable to remain standing for 10 min. Previous research suggests that susceptible individuals are unable to increase their systemic vascular resistance and plasma noradrenaline concentrations above pre‐flight upright levels. In this study, we tested the hypothesis that adaptation to the microgravity of space impairs sympathetic neural responses to upright posture on Earth. We studied six astronauts ∼72 and 23 days before and on landing day after the 16 day Neurolab space shuttle mission. We measured heart rate, arterial pressure and cardiac output, and calculated stroke volume and total peripheral resistance, during supine rest and 10 min of 60 deg upright tilt. Muscle sympathetic nerve activity was recorded in five subjects, as a direct measure of sympathetic nervous system responses. As in previous studies, mean (±s.e.m.) stroke volume was lower (46 ± 5 vs. 76 ± 3 ml, P= 0.017) and heart rate was higher (93 ± 1 vs. 74 ± 4 beats min−1, P= 0.002) during tilt after spaceflight than before spaceflight. Total peripheral resistance during tilt post flight was higher in some, but not all astronauts (1674 ± 256 vs. 1372 ± 62 dynes s cm−5, P= 0.32). No crew member exhibited orthostatic hypotension or presyncopal symptoms during the 10 min of postflight tilting. Muscle sympathetic nerve activity was higher post flight in all subjects, in supine (27 ± 4 vs. 17 ± 2 bursts min−1, P= 0.04) and tilted (46 ± 4 vs. 38 ± 3 bursts min−1, P= 0.01) positions. A strong (r2= 0.91–1.00) linear correlation between left ventricular stroke volume and muscle sympathetic nerve activity suggested that sympathetic responses were appropriate for the haemodynamic challenge of upright tilt and were unaffected by spaceflight. We conclude that after 16 days of spaceflight, muscle sympathetic nerve responses to upright tilt are normal.


Circulation | 2005

Women have lower tonic autonomic support of arterial blood pressure and less effective baroreflex buffering than men

Demetra D. Christou; Pamela Parker Jones; Jens Jordan; André Diedrich; David M. Robertson; Douglas R. Seals

Background—Short-term and tonic regulation of arterial blood pressure (BP) differ in premenopausal women and men of similar age. The autonomic nervous system (ANS) plays a critical role in BP regulation. Methods and Results—To test the hypothesis that women have lower tonic ANS support of BP (reduction in intra-arterial BP during acute ganglionic blockade [GB] with intravenous trimethaphan) and less effective baroreflex buffering (BRB) of BP (potentiation of the systolic BP [SBP] response to bolus phenylephrine during versus before GB) than men, 51 healthy adults, 22 premenopausal women (aged 28±1 years, mean±SE) and 29 men (aged 27±1 years), were studied. Women had lower baseline SBP and plasma catecholamine concentrations than men (P<0.05). Tonic ANS support of BP was ≈50% to 65% lower in the women (P<0.001). The reductions in BP during GB were related to baseline plasma catecholamine concentrations (r=−0.31 to −0.41, P<0.05). Acute BRB of BP was 47% smaller in the women (3.3±0.5 versus 6.3±0.9, P=0.006) and was related to the SBP responses to phenylephrine before GB (R2=0.71, P<0.0001). Systemic &agr;1-adrenergic vascular responsiveness (SBP response to bolus phenylephrine during GB) was not different (women 21.5±2 mm Hg versus men 18.6±2 mm Hg, P=0.3). Conclusions—Premenopausal women have lower tonic sympathoadrenal activity-related ANS support of BP and less effective BRB of BP than men of similar age. The lower tonic ANS support of BP could contribute to the lower chronic BP levels of premenopausal women, whereas attenuated BRB of BP may help explain less effective BP regulation in women in response to vasoactive drugs and acute stress.


Circulation | 2000

Sympathetically Mediated Hypertension in Autonomic Failure

John R. Shannon; Jens Jordan; André Diedrich; Bojan Pohar; Bonnie K. Black; David Robertson; Italo Biaggioni

BACKGROUND Approximately 50% of patients with primary autonomic failure have supine hypertension. We investigated whether this supine hypertension could be driven by residual sympathetic activity. METHODS AND RESULTS In patients with multiple system atrophy (MSA) or pure autonomic failure (PAF), we studied the effect of oral yohimbine on seated systolic blood pressure (SBP), the effect of ganglionic blockade (with trimethaphan) on supine SBP and plasma catecholamine levels, and the effect of alpha(1)-adrenoreceptor blockade (phentolamine) on supine SBP. The SBP response to yohimbine was greater in patients with MSA than in those with PAF (area under the curve, 2248+/-543 versus 467+/-209 mm Hg. min; P=0.022). MSA patients with a higher supine SBP had a greater response than those with a lower supine SBP (3874+/-809 versus 785+/-189 mm Hg. min; P=0. 0017); this relationship was not seen in PAF patients. MSA patients had a marked depressor response to low infusion rates of trimethaphan; the response in PAF patients was more variable. Plasma norepinephrine decreased in both groups, but heart rate did not change in either group. At 1 mg/min, trimethaphan decreased supine SBP by 67+/-8 and 12+/-6 mm Hg in MSA and PAF patients, respectively (P<0.0001). Cardiac index and total peripheral resistance decreased in MSA patients by 33.4+/-5.8% and 40.7+/-9.5%, respectively (P=0. 0015). Patients having a depressor response to trimethaphan also had a depressor response to phentolamine. In MSA patients, the pressor response to yohimbine and the decrease in SBP with 1 mg/min trimethaphan were correlated (r=0.98; P=0.001). CONCLUSIONS Residual sympathetic activity drives supine hypertension in MSA. It contributes to, but does not completely explain, supine hypertension in PAF.


Hypertension | 2000

Interaction of Carbon Dioxide and Sympathetic Nervous System Activity in the Regulation of Cerebral Perfusion in Humans

Jens Jordan; John R. Shannon; André Diedrich; Bonnie K. Black; Fernando Costa; David Robertson; Italo Biaggioni

Recent studies suggest that activation of the sympathetic nervous system either directly or indirectly influences cerebrovascular tone in humans even within the autoregulatory range. In 6 healthy subjects (aged 29±4 years), we used transcranial Doppler sonography to determine cerebral blood flow velocity during sympathetic activation elicited through head-up tilt (HUT) and sympathetic deactivation through ganglionic blockade. Paco2 was manipulated through hyperventilation and CO2 breathing (5%). With subjects in the supine position and during HUT, mean arterial pressure was not influenced by Paco2. During ganglionic blockade, mean arterial pressure decreased markedly with hyperventilation (−13±1.9 mm Hg). Manipulation of sympathetic tone elicited only mild changes in cerebral blood flow (64±5.8 cm/s supine, 58±4.9 cm/s upright, and 66±6.2 cm/s during ganglionic blockade;P =0.07 by ANOVA). The slope of the regression between Paco2 and mean velocity was 1.6±0.18 cm/(s · mm Hg) supine, 1.3±0.14 cm/(s · mm Hg) during HUT, and 2.3±0.36 cm/(s · mm Hg) during ganglionic blockade (P <0.05). Spontaneous Paco2 and ventilatory response to hypercapnia were also modulated by the level of sympathetic activity. Changes in sympathetic tone have a limited effect on cerebral blood flow at normal Paco2 levels. However, the sympathetic nervous system seems to attenuate the CO2-induced increase in cerebral blood flow. This phenomenon may indicate a moderate direct effect of the sympathetic nervous system on the cerebral vasculature. Furthermore, sympathetic activation tends to increase ventilation and thus can indirectly increase cerebrovascular tone.


American Journal of Physiology-heart and Circulatory Physiology | 1998

Controlled breathing protocols probe human autonomic cardiovascular rhythms

William H. Cooke; James F. Cox; André Diedrich; J. Andrew Taylor; Larry A. Beightol; James E. Ames; Jeffrey B. Hoag; Henrik Seidel; Dwain L. Eckberg

The purpose of this study was to determine how breathing protocols requiring varying degrees of control affect cardiovascular dynamics. We measured inspiratory volume, end-tidal CO2, R-R interval, and arterial pressure spectral power in 10 volunteers who followed the following 5 breathing protocols: 1) uncontrolled breathing for 5 min; 2) stepwise frequency breathing (at 0.3, 0.25, 0.2, 0.15, 0.1, and 0.05 Hz for 2 min each); 3) stepwise frequency breathing as above, but with prescribed tidal volumes; 4) random-frequency breathing (∼0.5-0.05 Hz) for 6 min; and 5) fixed-frequency breathing (0.25 Hz) for 5 min. During stepwise breathing, R-R interval and arterial pressure spectral power increased as breathing frequency decreased. Control of inspired volume reduced R-R interval spectral power during 0.1 Hz breathing ( P < 0.05). Stepwise and random-breathing protocols yielded comparable coherence and transfer functions between respiration and R-R intervals and systolic pressure and R-R intervals. Random- and fixed-frequency breathing reduced end-tidal CO2modestly ( P < 0.05). Our data suggest that stringent tidal volume control attenuates low-frequency R-R interval oscillations and that fixed- and random-rate breathing may decrease CO2 chemoreceptor stimulation. We conclude that autonomic rhythms measured during different breathing protocols have much in common but that a stepwise protocol without stringent control of inspired volume may allow for the most efficient assessment of short-term respiratory-mediated autonomic oscillations.

Collaboration


Dive into the André Diedrich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Jordan

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Tank

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satish R. Raj

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Friedrich C. Luft

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge