Andre E. Moura
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andre E. Moura.
Molecular Biology and Evolution | 2014
Andre E. Moura; Charlene Janse van Rensburg; Malgorzata Pilot; Arman Tehrani; Peter B. Best; Meredith Thornton; Stephanie Plön; P J Nico de Bruyn; Kim C. Worley; Richard A. Gibbs; Marilyn E. Dahlheim; Alan Rus Hoelzel
Ecosystem function and resilience is determined by the interactions and independent contributions of individual species. Apex predators play a disproportionately determinant role through their influence and dependence on the dynamics of prey species. Their demographic fluctuations are thus likely to reflect changes in their respective ecological communities and habitat. Here, we investigate the historical population dynamics of the killer whale based on draft nuclear genome data for the Northern Hemisphere and mtDNA data worldwide. We infer a relatively stable population size throughout most of the Pleistocene, followed by an order of magnitude decline and bottleneck during the Weichselian glacial period. Global mtDNA data indicate that while most populations declined, at least one population retained diversity in a stable, productive ecosystem off southern Africa. We conclude that environmental changes during the last glacial period promoted the decline of a top ocean predator, that these events contributed to the pattern of diversity among extant populations, and that the relatively high diversity of a population currently in productive, stable habitat off South Africa suggests a role for ocean productivity in the widespread decline.
Systematic Biology | 2013
Andre E. Moura; Sandra C. Abel Nielsen; Julia T. Vilstrup; J. Víctor Moreno-Mayar; M. Thomas P. Gilbert; Howard Gray; Ada Natoli; Luciana M. Möller; A. Rus Hoelzel
Understanding the evolution of diversity and the resulting systematics in marine systems is confounded by the lack of clear boundaries in oceanic habitats, especially for highly mobile species like marine mammals. Dolphin populations and sibling species often show differentiation between coastal and offshore habitats, similar to the pelagic/littoral or benthic differentiation seen for some species of fish. Here we test the hypothesis that lineages within the polytypic genus Tursiops track past changes in the environment reflecting ecological drivers of evolution facilitated by habitat release. We used a known recent time point for calibration (the opening of the Bosphorus) and whole mitochondrial genome (mitogenome) sequences for high phylogenetic resolution. The pattern of lineage formation suggested an origin in Australasia and several early divisions involving forms currently inhabiting coastal habitats. Radiation in pelagic environments was relatively recent, and was likely followed by a return to coastal habitat in some regions. The timing of some nodes defining different ecotypes within the genus clustered near the two most recent interglacial transitions. A signal for an increase in diversification was also seen for dates after the last glacial maximum. Together these data suggest the tracking of habitat preference during geographic expansions, followed by transition points reflecting habitat shifts, which were likely associated with periods of environmental change.
Molecular Ecology | 2014
Andre E. Moura; John Kenny; Roy R. Chaudhuri; Margaret Hughes; Andreanna J. Welch; Ryan Rudolf Reisinger; P J Nico de Bruyn; Marilyn E. Dahlheim; Nathalie Hall; A. Rus Hoelzel
The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high‐resolution analysis based on nuclear single‐nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift.
Heredity | 2015
Andre E. Moura; John Kenny; Roy R. Chaudhuri; Margaret Hughes; Ryan Rudolf Reisinger; P J N de Bruyn; Marilyn E. Dahlheim; Neil Hall; A. R. Hoelzel
For many highly mobile species, the marine environment presents few obvious barriers to gene flow. Even so, there is considerable diversity within and among species, referred to by some as the ‘marine speciation paradox’. The recent and diverse radiation of delphinid cetaceans (dolphins) represents a good example of this. Delphinids are capable of extensive dispersion and yet many show fine-scale genetic differentiation among populations. Proposed mechanisms include the division and isolation of populations based on habitat dependence and resource specializations, and habitat release or changing dispersal corridors during glacial cycles. Here we use a phylogenomic approach to investigate the origin of differentiated sympatric populations of killer whales (Orcinus orca). Killer whales show strong specialization on prey choice in populations of stable matrifocal social groups (ecotypes), associated with genetic and phenotypic differentiation. Our data suggest evolution in sympatry among populations of resource specialists.
Evolutionary Biology-new York | 2015
Stefania Gaspari; Aviad Scheinin; Draško Holcer; Caterina Maria Fortuna; Chiara Natali; Tilen Genov; Alexandros Frantzis; Guido Chelazzi; Andre E. Moura
The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of pre-existing genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent post-glacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments.
Journal of Evolutionary Biology | 2013
Andre E. Moura; Ada Natoli; Emer Rogan; A. R. Hoelzel
Despite the scarcity of geographical barriers in the ocean environment, delphinid cetaceans often exhibit marked patterns of population structure on a regional scale. The European coastline is a prime example, with species exhibiting population structure across well‐defined environmental boundaries. Here we undertake a comprehensive population genetic study on the European common dolphin (Delphinus delphis, based on 492 samples and 15 loci) and establish that this species shows exceptional panmixia across most of the study range. We found differentiation only between the eastern and western Mediterranean, consistent with earlier studies, and here use approximate Bayesian computations to explore different scenarios to explain the observed pattern. Our results suggest that a recent population bottleneck likely contributed significantly to the differentiation of the Eastern Mediterranean population (in Greek waters). This interpretation is consistent with independent census data that suggest a sharp population decline in the recent past. The implication is that an unperturbed population may currently show panmixia across the full study range. This exception to the more typical pattern of population structure seen for other regional dolphin species (and for common dolphin populations elsewhere in the world) suggests particular ecological or life‐history traits distinct to this species in European waters.
Proceedings of the Royal Society B: Biological Sciences | 2015
Malgorzata Pilot; Tadeusz Malewski; Andre E. Moura; Tomasz Grzybowski; Kamil Oleński; Anna Ruść; Stanisław Kamiński; Fernanda Ruiz Fadel; Daniel Mills; Abdulaziz N. Alagaili; Osama B. Mohammed; Grzegorz Kłys; Innokentiy M. Okhlopkov; Ewa Suchecka; Wiesław Bogdanowicz
Although a large part of the global domestic dog population is free-ranging and free-breeding, knowledge of genetic diversity in these free-breeding dogs (FBDs) and their ancestry relations to pure-breed dogs is limited, and the indigenous status of FBDs in Asia is still uncertain. We analyse genome-wide SNP variability of FBDs across Eurasia, and show that they display weak genetic structure and are genetically distinct from pure-breed dogs rather than constituting an admixture of breeds. Our results suggest that modern European breeds originated locally from European FBDs. East Asian and Arctic breeds show closest affinity to East Asian FBDs, and they both represent the earliest branching lineages in the phylogeny of extant Eurasian dogs. Our biogeographic reconstruction of ancestral distributions indicates a gradual westward expansion of East Asian indigenous dogs to the Middle East and Europe through Central and West Asia, providing evidence for a major expansion that shaped the patterns of genetic differentiation in modern dogs. This expansion was probably secondary and could have led to the replacement of earlier resident populations in Western Eurasia. This could explain why earlier studies based on modern DNA suggest East Asia as the region of dog origin, while ancient DNA and archaeological data point to Western Eurasia.
G3: Genes, Genomes, Genetics | 2016
Malgorzata Pilot; Tadeusz Malewski; Andre E. Moura; Tomasz Grzybowski; Kamil Oleński; Stanisław Kamiński; Fernanda Ruiz Fadel; Abdulaziz N. Alagaili; Osama B. Mohammed; Wiesław Bogdanowicz
Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of “domestication syndrome.” This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication.
Behavioral Ecology and Sociobiology | 2017
Laura Ball; Kypher Shreves; Malgorzata Pilot; Andre E. Moura
Social structure plays a crucial role in determining a species’ dispersal patterns and genetic structure. Cetaceans show a diversity of social and mating systems, but their effects on dispersal and genetic structure are not well known, in part because of technical difficulties in obtaining robust observational data. Here, we combine genetic profiling and GIS analysis to identify patterns of kin distribution over time and space, to infer mating structure and dispersal patterns in short-beaked common dolphins (Delphinus delphis). This species is highly social, and exhibits weak spatial genetic structure in the Northeast Atlantic and Mediterranean Sea, thought to result from fluid social structure and low levels of site fidelity. We found that although sampled groups were not composed of closely related individuals, close kin were frequently found in the same geographic location over several years. Our results suggest that common dolphin exhibits some level of site fidelity, which could be explained by foraging for temporally varying prey resource in areas familiar to individuals. Dispersal from natal area likely involves long-distance movements of females, as males are found more frequently than females in the same locations as their close kin. Long-distance dispersal may explain the near panmixia observed in this species. By analysing individuals sampled in the same geographic location over multiple years, we avoid caveats associated with divergence-based methods of inferring sex-biased dispersal. We thus provide a unique perspective on this species’ social structure and dispersal behaviour, and how it relates to the observed low levels of population genetic structure in European waters.Significance statementMovement patterns and social interactions are aspects of wild animal’s behaviour important for understanding their ecology. However, tracking these behaviours directly can be very challenging in wide-ranging species such as whales and dolphins. In this study, we used genetic information to detect how patterns of kin associations change in space and time, to infer aspects of movement and social structure. We identified previously unknown site fidelity, and suggested that dispersal usually involves females, travelling long distances from the natal area. Our data analysis strategy overcomes known limitations of previously used genetic inference methods, and provides a new approach to identify differences in dispersal between the sexes, which contribute to better understanding of the species’ behaviour and ecology. In this case, we suggest that females are more likely to disperse than males, a pattern unusual amongst mammals.
Heredity | 2016
A. R. Hoelzel; Andre E. Moura
Killer whales differentiating in geographic sympatry facilitated by divergent behavioural traditions