Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andreanna J. Welch is active.

Publication


Featured researches published by Andreanna J. Welch.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change

Webb Miller; Stephan C. Schuster; Andreanna J. Welch; Aakrosh Ratan; Oscar C. Bedoya-Reina; Fangqing Zhao; Hie Lim Kim; Richard Burhans; Daniela I. Drautz; Nicola E. Wittekindt; Lynn P. Tomsho; Enrique Ibarra-Laclette; Luis Herrera-Estrella; Elizabeth Peacock; Sean D. Farley; George K. Sage; Karyn D. Rode; Martyn E. Obbard; Rafael Montiel; Lutz Bachmann; Ólafur Ingólfsson; Jon Aars; Thomas Mailund; Øystein Wiig; Sandra L. Talbot; Charlotte Lindqvist

Polar bears (PBs) are superbly adapted to the extreme Arctic environment and have become emblematic of the threat to biodiversity from global climate change. Their divergence from the lower-latitude brown bear provides a textbook example of rapid evolution of distinct phenotypes. However, limited mitochondrial and nuclear DNA evidence conflicts in the timing of PB origin as well as placement of the species within versus sister to the brown bear lineage. We gathered extensive genomic sequence data from contemporary polar, brown, and American black bear samples, in addition to a 130,000- to 110,000-y old PB, to examine this problem from a genome-wide perspective. Nuclear DNA markers reflect a species tree consistent with expectation, showing polar and brown bears to be sister species. However, for the enigmatic brown bears native to Alaskas Alexander Archipelago, we estimate that not only their mitochondrial genome, but also 5–10% of their nuclear genome, is most closely related to PBs, indicating ancient admixture between the two species. Explicit admixture analyses are consistent with ancient splits among PBs, brown bears and black bears that were later followed by occasional admixture. We also provide paleodemographic estimates that suggest bear evolution has tracked key climate events, and that PB in particular experienced a prolonged and dramatic decline in its effective population size during the last ca. 500,000 years. We demonstrate that brown bears and PBs have had sufficiently independent evolutionary histories over the last 4–5 million years to leave imprints in the PB nuclear genome that likely are associated with ecological adaptation to the Arctic environment.


Nature | 2013

Architecture and evolution of a minute plant genome

Enrique Ibarra-Laclette; Eric Lyons; Gustavo Hernández-Guzmán; Claudia Anahí Pérez-Torres; Lorenzo Carretero-Paulet; Tien Hao Chang; Tianying Lan; Andreanna J. Welch; María Jazmín Abraham Juárez; June Simpson; Araceli Fernández-Cortés; Mario A. Arteaga-Vazquez; Elsa Góngora-Castillo; Gustavo J. Acevedo-Hernández; Stephan C. Schuster; Heinz Himmelbauer; André E. Minoche; Sen Xu; Michael Lynch; Araceli Oropeza-Aburto; Sergio Alan Cervantes-Pérez; María de J Ortega-Estrada; Jacob Israel Cervantes-Luevano; Todd P. Michael; Todd C. Mockler; Douglas W. Bryant; Alfredo Herrera-Estrella; Victor A. Albert; Luis Herrera-Estrella

It has been argued that the evolution of plant genome size is principally unidirectional and increasing owing to the varied action of whole-genome duplications (WGDs) and mobile element proliferation. However, extreme genome size reductions have been reported in the angiosperm family tree. Here we report the sequence of the 82-megabase genome of the carnivorous bladderwort plant Utricularia gibba. Despite its tiny size, the U. gibba genome accommodates a typical number of genes for a plant, with the main difference from other plant genomes arising from a drastic reduction in non-genic DNA. Unexpectedly, we identified at least three rounds of WGD in U. gibba since common ancestry with tomato (Solanum) and grape (Vitis). The compressed architecture of the U. gibba genome indicates that a small fraction of intergenic DNA, with few or no active retrotransposons, is sufficient to regulate and integrate all the processes required for the development and reproduction of a complex organism.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Millennial-scale isotope records from a wide-ranging predator show evidence of recent human impact to oceanic food webs

Anne E. Wiley; Peggy H. Ostrom; Andreanna J. Welch; Robert C. Fleischer; Hasand Gandhi; John Southon; Thomas W. Stafford; Jay F. Penniman; Darcy Hu; Fern Duvall; Helen F. James

Human exploitation of marine ecosystems is more recent in oceanic than near shore regions, yet our understanding of human impacts on oceanic food webs is comparatively poor. Few records of species that live beyond the continental shelves date back more than 60 y, and the sheer size of oceanic regions makes their food webs difficult to study, even in modern times. Here, we use stable carbon and nitrogen isotopes to study the foraging history of a generalist, oceanic predator, the Hawaiian petrel (Pterodroma sandwichensis), which ranges broadly in the Pacific from the equator to near the Aleutian Islands. Our isotope records from modern and ancient, radiocarbon-dated bones provide evidence of over 3,000 y of dietary stasis followed by a decline of ca. 1.8‰ in δ15N over the past 100 y. Fishery-induced trophic decline is the most likely explanation for this sudden shift, which occurs in genetically distinct populations with disparate foraging locations. Our isotope records also show that coincident with the apparent decline in trophic level, foraging segregation among petrel populations decreased markedly. Because variation in the diet of generalist predators can reflect changing availability of their prey, a foraging shift in wide-ranging Hawaiian petrel populations suggests a relatively rapid change in the composition of oceanic food webs in the Northeast Pacific. Understanding and mitigating widespread shifts in prey availability may be a critical step in the conservation of endangered marine predators such as the Hawaiian petrel.


Molecular Ecology | 2014

Population genomics of the killer whale indicates ecotype evolution in sympatry involving both selection and drift

Andre E. Moura; John Kenny; Roy R. Chaudhuri; Margaret Hughes; Andreanna J. Welch; Ryan Rudolf Reisinger; P J Nico de Bruyn; Marilyn E. Dahlheim; Nathalie Hall; A. Rus Hoelzel

The evolution of diversity in the marine ecosystem is poorly understood, given the relatively high potential for connectivity, especially for highly mobile species such as whales and dolphins. The killer whale (Orcinus orca) has a worldwide distribution, and individual social groups travel over a wide geographic range. Even so, regional populations have been shown to be genetically differentiated, including among different foraging specialists (ecotypes) in sympatry. Given the strong matrifocal social structure of this species together with strong resource specializations, understanding the process of differentiation will require an understanding of the relative importance of both genetic drift and local adaptation. Here we provide a high‐resolution analysis based on nuclear single‐nucleotide polymorphic markers and inference about differentiation at both neutral loci and those potentially under selection. We find that all population comparisons, within or among foraging ecotypes, show significant differentiation, including populations in parapatry and sympatry. Loci putatively under selection show a different pattern of structure compared to neutral loci and are associated with gene ontology terms reflecting physiologically relevant functions (e.g. related to digestion). The pattern of differentiation for one ecotype in the North Pacific suggests local adaptation and shows some fixed differences among sympatric ecotypes. We suggest that differential habitat use and resource specializations have promoted sufficient isolation to allow differential evolution at neutral and functional loci, but that the process is recent and dependent on both selection and drift.


Molecular Ecology | 2011

Mitochondrial and nuclear DNA sequences reveal recent divergence in morphologically indistinguishable petrels.

Andreanna J. Welch; Allison A. Yoshida; Robert C. Fleischer

Often during the process of divergence, genetic markers will only gradually obtain the signal of isolation. Studies of recently diverged taxa utilizing both mitochondrial and nuclear data sets may therefore yield gene trees with differing levels of phylogenetic signal as a result of differences in coalescence times. However, several factors can lead to this same pattern, and it is important to distinguish between them to gain a better understanding of the process of divergence and the factors driving it. Here, we employ three nuclear intron loci in addition to the mitochondrial Cytochrome b gene to investigate the magnitude and timing of divergence between two endangered and nearly indistinguishable petrel taxa: the Galapagos (GAPE) and Hawaiian (HAPE) petrels (Pterodroma phaeopygia and P. sandwichensis). Phylogenetic analyses indicated reciprocal monophyly between these two taxa for the mitochondrial data set, but trees derived from the nuclear introns were unresolved. Coalescent analyses revealed effectively no migration between GAPE and HAPE over the last 100 000 generations and that they diverged relatively recently, approximately 550 000 years ago, coincident with a time of intense ecological change in both the Galapagos and Hawaiian archipelagoes. This indicates that recent divergence and incomplete lineage sorting are causing the difference in the strength of the phylogenetic signal of each data set, instead of insufficient variability or ongoing male‐biased dispersal. Further coalescent analyses show that gene flow is low even between islands within each archipelago suggesting that divergence may be continuing at a local scale. Accurately identifying recently isolated taxa is becoming increasingly important as many clearly recognizable species are already threatened by extinction.


Genome Biology and Evolution | 2014

Polar Bears Exhibit Genome-Wide Signatures of Bioenergetic Adaptation to Life in the Arctic Environment

Andreanna J. Welch; Oscar C. Bedoya-Reina; Lorenzo Carretero-Paulet; Webb Miller; Karyn D. Rode; Charlotte Lindqvist

Polar bears (Ursus maritimus) face extremely cold temperatures and periods of fasting, which might result in more severe energetic challenges than those experienced by their sister species, the brown bear (U. arctos). We have examined the mitochondrial and nuclear genomes of polar and brown bears to investigate whether polar bears demonstrate lineage-specific signals of molecular adaptation in genes associated with cellular respiration/energy production. We observed increased evolutionary rates in the mitochondrial cytochrome c oxidase I gene in polar but not brown bears. An amino acid substitution occurred near the interaction site with a nuclear-encoded subunit of the cytochrome c oxidase complex and was predicted to lead to a functional change, although the significance of this remains unclear. The nuclear genomes of brown and polar bears demonstrate different adaptations related to cellular respiration. Analyses of the genomes of brown bears exhibited substitutions that may alter the function of proteins that regulate glucose uptake, which could be beneficial when feeding on carbohydrate-dominated diets during hyperphagia, followed by fasting during hibernation. In polar bears, genes demonstrating signatures of functional divergence and those potentially under positive selection were enriched in functions related to production of nitric oxide (NO), which can regulate energy production in several different ways. This suggests that polar bears may be able to fine-tune intracellular levels of NO as an adaptive response to control trade-offs between energy production in the form of adenosine triphosphate versus generation of heat (thermogenesis).


Heredity | 2012

Population divergence and gene flow in an endangered and highly mobile seabird

Andreanna J. Welch; Robert C. Fleischer; Helen F. James; Anne E. Wiley; Peggy H. Ostrom; Josh Adams; Fern Duvall; N. Holmes; D. Hu; J. Penniman; K. A. Swindle

Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future.


Molecular Phylogenetics and Evolution | 2016

The quest to resolve recent radiations: Plastid phylogenomics of extinct and endangered Hawaiian endemic mints (Lamiaceae).

Andreanna J. Welch; Katherine Collins; Aakrosh Ratan; Daniela I. Drautz-Moses; Stephan C. Schuster; Charlotte Lindqvist

The Hawaiian mints (Lamiaceae), one of the largest endemic plant lineages in the archipelago, provide an excellent system to study rapid diversification of a lineage with a remote, likely paleohybrid origin. Since their divergence from New World mints 4-5 million years ago the members of this lineage have diversified greatly and represent a remarkable array of vegetative and reproductive phenotypes. Today many members of this group are endangered or already extinct, and molecular phylogenetic work relies largely on herbarium samples collected during the last century. So far a gene-by-gene approach has been utilized, but the recent radiation of the Hawaiian mints has resulted in minimal sequence divergence and hence poor phylogenetic resolution. In our quest to trace the reticulate evolutionary history of the lineage, a resolved maternal phylogeny is necessary. We applied a high-throughput approach to sequence 12 complete or nearly complete plastid genomes from multiple Hawaiian mint species and relatives, including extinct and rare taxa. We also targeted 108 hypervariable regions from throughout the chloroplast genomes in nearly all of the remaining Hawaiian species, and relatives, using a next-generation amplicon sequencing approach. This procedure generated ∼20Kb of sequence data for each taxon and considerably increased the total number of variable sites over previous analyses. Our results demonstrate the potential of high-throughput sequencing of historic material for evolutionary studies in rapidly evolving lineages. Our study, however, also highlights the challenges of resolving relationships within recent radiations even at the genomic level.


Molecular Biology and Evolution | 2012

Ancient DNA Reveals Genetic Stability Despite Demographic Decline: 3,000 Years of Population History in the Endemic Hawaiian Petrel

Andreanna J. Welch; Anne E. Wiley; Helen F. James; Peggy H. Ostrom; Thomas W. Stafford; Robert C. Fleischer

In the Hawaiian Islands, human colonization, which began approximately 1,200 to 800 years ago, marks the beginning of a period in which nearly 75% of the endemic avifauna became extinct and the population size and range of many additional species declined. It remains unclear why some species persisted whereas others did not. The endemic Hawaiian petrel (Pterodroma sandwichensis) has escaped extinction, but colonies on two islands have been extirpated and populations on remaining islands have contracted. We obtained mitochondrial DNA sequences from 100 subfossil bones, 28 museum specimens, and 289 modern samples to investigate patterns of gene flow and temporal changes in the genetic diversity of this endangered species over the last 3,000 years, as Polynesians and then Europeans colonized the Hawaiian Islands. Genetic differentiation was found to be high between both modern and ancient petrel populations. However, gene flow was substantial between the extirpated colonies on Oahu and Molokai and modern birds from the island of Lanai. No significant reductions in genetic diversity occurred over this period, despite fears in the mid-1900s that this species may have been extinct. Simulations show that even a decline to a stable effective population size of 100 individuals would result in the loss of only 5% of the expected heterozygosity. Simulations also show that high levels of genetic diversity may be retained due to the long generation time of this species. Such decoupling between population size and genetic diversity in long-lived species can have important conservation implications. It appears that a pattern of dispersal from declining colonies, in addition to long generation time, may have allowed the Hawaiian petrel to escape a severe genetic bottleneck, and the associated extinction vortex, and persist despite a large population decline after human colonization.


The Condor | 2011

A NEW SPECIES OF SHEARWATER (PUFFINUS) RECORDED FROM MIDWAY ATOLL, NORTHWESTERN HAWAIIAN ISLANDS

Peter Pyle; Andreanna J. Welch; Robert C. Fleischer

Abstract. Small black-and-white shearwaters of the genus Puffinus are distributed globally, and their phylogenetic relationships are complex and uncertain. In 1963 a small shearwater collected at Midway Atoll in the North Pacific Ocean was identified as a Little Shearwater (P. assimilis), but several physical features suggest closer alliance with Audubons Shearwater (P. lherminieri) and its relatives. Biometrics indicate that the taxon this specimen represents is smaller than any other known shearwater, and phylogenetic analyses indicate it is distinct, with a pair-wise sequence divergence of at least 3.8% from related taxa. We thus propose a new species based on the specimen: Bryans Shearwater (Puffinus bryani nom. nov.). The breeding and nonbreeding ranges of Bryans Shearwater are unknown, but a physical resemblance to the North Atlantic boydi (of controversial taxonomic status within Puffinus) suggests an affiliation with subtropical or tropical waters. Bryans Shearwater is apparently rare and could be threatened by extinction; therefore, additional information is needed to increase our understanding of this taxon and its conservation requirements.

Collaboration


Dive into the Andreanna J. Welch's collaboration.

Top Co-Authors

Avatar

Robert C. Fleischer

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar

Anne E. Wiley

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Helen F. James

National Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Peggy H. Ostrom

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephan C. Schuster

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josh Adams

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge