André Haman
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by André Haman.
Molecular and Cellular Biology | 1999
Unnur Thorsteinsdottir; Jana Krosl; Evert Kroon; André Haman; Trang Hoang; Guy Sauvageau
ABSTRACT A recurrent translocation between chromosome 1 (Pbx1) and 19 (E2A) leading to the expression of the E2A-Pbx1 fusion oncoprotein occurs in ∼5 to 10% of acute leukemias in humans. It has been proposed that some of the oncogenic potential of E2A-Pbx1 could be mediated through heterocomplex formation with Hox proteins, which are also involved in human and mouse leukemias. To directly test this possibility, mouse bone marrow cells were engineered by retroviral gene transfer to overexpress E2A-Pbx1a together withHoxa9. The results obtained demonstrated a strong synergistic interaction between E2A-Pbx1a andHoxa9 in inducing growth factor-independent proliferation of transduced bone marrow cells in vitro and leukemic growth in vivo in only 39 ± 2 days. The leukemic blasts which coexpressE2A-Pbx1a and Hoxa9 showed little differentiation and produced cytokines such as interleukin-3, granulocyte colony-stimulating factor, and Steel. Together, these studies demonstrate that the Hoxa9 and E2A-Pbx1a gene products collaborate to produce a highly aggressive acute leukemic disease.
Blood | 2010
Julie Lacombe; Sabine Herblot; Shanti Rojas-Sutterlin; André Haman; Stéphane Barakat; Norman N. Iscove; Guy Sauvageau; Trang Hoang
The majority of long-term reconstituting hematopoietic stem cells (LT-HSCs) in the adult is in G(0), whereas a large proportion of progenitors are more cycling. We show here that the SCL/TAL1 transcription factor is highly expressed in LT-HSCs compared with short-term reconstituting HSCs and progenitors and that SCL negatively regulates the G(0)-G(1) transit of LT-HSCs. Furthermore, when SCL protein levels are decreased by gene targeting or by RNA interference, the reconstitution potential of HSCs is impaired in several transplantation assays. First, the mean stem cell activity of HSCs transplanted at approximately 1 competitive repopulating unit was 2-fold decreased when Scl gene dosage was decreased. Second, Scl(+/-) HSCs were at a marked competitive disadvantage with Scl(+/+) cells when transplanted at 4 competitive repopulating units equivalent. Third, reconstitution of the stem cell pool by adult HSCs expressing Scl-directed shRNAs was decreased compared with controls. At the molecular level, we found that SCL occupies the Cdkn1a and Id1 loci in primary hematopoietic cells and that the expression levels of these 2 regulators of HSC cell cycle and long-term functions are sensitive to Scl gene dosage. Together, our observations suggest that SCL impedes G(0)-G(1) transition in HSCs and regulates their long-term competence.
Molecular and Cellular Biology | 1999
Yotis A. Senis; Ralph Zirngibl; Jennifer McVeigh; André Haman; Trang Hoang; Peter A. Greer
ABSTRACT The fps/fes proto-oncogene encodes a cytoplasmic protein-tyrosine kinase that is functionally implicated in the survival and terminal differentiation of myeloid progenitors and in signaling from several members of the cytokine receptor superfamily. To gain further insight into the physiological function of fps/fes, we targeted the mouse locus with a kinase-inactivating missense mutation. Mutant Fps/Fes protein was expressed at normal levels in these mice, but it lacked detectable kinase activity. Homozygous mutant animals were viable and fertile, and they showed no obvious defects. Flow cytometry analysis of bone marrow showed no statistically significant differences in the levels of myeloid, erythroid, or B-cell precursors. Subtle abnormalities observed in mutant mice included slightly elevated total leukocyte counts and splenomegaly. In bone marrow hematopoietic progenitor cell colony-forming assays, mutant mice gave slightly elevated numbers and variable sizes of CFU-granulocyte macrophage in response to interleukin-3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Tyrosine phosphorylation of Stat3 and Stat5A in bone marrow-derived macrophages was dramatically reduced in response to GM-CSF but not to IL-3 or IL-6. This suggests a distinct nonredundant role for Fps/Fes in signaling from the GM-CSF receptor that does not extend to the closely related IL-3 receptor. Lipopolysaccharide-induced Erk1/2 activation was also reduced in mutant macrophages. These subtle molecular phenotypes suggest a possible nonredundant role for Fps/Fes in myelopoiesis and immune responses.
Molecular and Cellular Biology | 2007
Benoît Grondin; Martin Lefrancois; Mathieu Tremblay; Marianne Saint-Denis; André Haman; Kazuo Waga; André Bédard; Daniel G. Tenen; Trang Hoang
ABSTRACT Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1β (IL-1β) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein β (C/EBPβ). Unexpectedly, the interaction interface with PU.1 and C/EBPβ involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1β locus is occupied by PU.1 and C/EBPβ and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.
Journal of Biological Chemistry | 2007
Eric Lécuyer; Simon Larivière; Marie-Claude Sincennes; André Haman; Rachid Lahlil; Margarita Todorova; Mathieu Tremblay; Brian C. Wilkes; Trang Hoang
Gene expression programs are established by networks of interacting transcription factors. The basic helix-loop-helix factor SCL and the LIM-only protein LMO2 are components of transcription factor complexes that are essential for hematopoiesis. Here we show that LMO2 and SCL are predominant interaction partners in hematopoietic cells and that this interaction occurs through a conserved interface residing in the loop and helix 2 of SCL. This interaction nucleates the assembly of SCL complexes on DNA and is required for target gene induction and for the stimulation of erythroid and megakaryocytic differentiation. We also demonstrate that SCL determines LMO2 protein levels in hematopoietic cells and reveal that interaction with SCL prevents LMO2 degradation by the proteasome. We propose that the SCL-LMO2 interaction couples protein stabilization with higher order protein complex assembly, thus providing a powerful means of modulating the stoichiometry and spatiotemporal activity of SCL complexes. This interaction likely provides a rate-limiting step in the transcriptional control of hematopoiesis and leukemia, and similar mechanisms may operate to control the assembly of diverse protein modules.
Journal of Biological Chemistry | 1999
André Haman; Céline Cadieux; Brian Wilkes; Tim Hercus; Angel Lopez; S. C. Clark; Trang Hoang
The granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is composed of two chains that belong to the superfamily of cytokine receptors typified by the growth hormone receptor. A common structural element found in cytokine receptors is a module of two fibronectin-like domains, each characterized by seven β-strands denoted A–G and A′–G′, respectively. The α-chain (GMRα) confers low affinity GM-CSF binding (K d = 1–5 nm), whereas the β-chain (βc) does not bind GM-CSF by itself but confers high affinity binding when associated with α (K d = 40–100 pm). In the present study, we define the molecular determinants required for ligand recognition and for stabilization of the complex through a convergence of several approaches, including the construction of chimeric receptors, the molecular dynamics of our three-dimensional model of the GM·GMR complex, and site-directed mutagenesis. The functional importance of individual residues was then investigated through ligand binding studies at equilibrium and through determination of the kinetic constants of the GM·GMR complex. Critical to this tripartite complex is the establishment of four noncovalent bonds, three that determine the nature of the ligand recognition process involving residues Arg280 and Tyr226 of the α-chain and residue Tyr365 of the β-chain, since mutations of either one of these residues resulted in a significant decrease in the association rate. Finally, residue Tyr365 of βc serves a dual function in that it cooperates with another residue of βc, Tyr421 to stabilize the complex since mutation of Tyr365 and Tyr421 result in a drastic increase in the dissociation rate (Koff). Interestingly, these four residues are located at the B′-C′ and F′-G′ loops of GMRα and of βc, thus establishing a functional symmetry within an apparently asymmetrical heterodimeric structure.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Nathalie Girard; Mathieu Tremblay; Magali Humbert; Benoît Grondin; André Haman; Jean Labrecque; Bing Chen; Zhu Chen; Sai-Juan Chen; Trang Hoang
In acute promyelocytic leukemia, granulocytic differentiation is arrested at the promyelocyte stage. The variant t(11;17) translocation produces two fusion proteins, promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) and RARα-PLZF, both of which participate in leukemia development. Here we provide evidence that the activity of CCAAT/enhancer binding protein α (C/EBPα), a master regulator of granulocytic differentiation, is severely impaired in leukemic promyelocytes with the t(11;17) translocation compared with those associated with the t(15;17) translocation. We show that RARα-PLZF inhibits myeloid cell differentiation through interactions with C/EBPα tethered to DNA, using ChIP and DNA capture assays. Furthermore, RARα-PLZF recruits HDAC1 and causes histone H3 deacetylation at C/EBPα target loci, thereby decreasing the expression of C/EBPα target genes. In line with these results, HDAC inhibitors restore in part C/EBPα target gene expression. These findings provide molecular evidence for a mechanism through which RARα-PLZF acts as a modifier oncogene that subverts differentiation in the granulocytic lineage by associating with C/EBPα and inhibiting its activity.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Marie-Claude Sincennes; Magali Humbert; Benoît Grondin; Véronique Lisi; Diogo Veiga; André Haman; Christophe Cazaux; Nazar Mashtalir; El Bachir Affar; Alain Verreault; Trang Hoang
Significance Understanding how cell cycle and cell differentiation are coordinated during normal hematopoiesis will reveal molecular insights in leukemogenesis. LIM-only 2 (LMO2) is a transcriptional regulator that controls the erythroid lineage via activation of an erythroid-specific gene expression program. Here, we uncover an unexpected function for LMO2 in controlling DNA replication via protein–protein interactions with essential DNA replication enzymes. To our knowledge, this work provides the first evidence for a nontranscriptional function of LMO2 that drives the cell cycle at the expense of differentiation in the erythroid lineage and in thymocytes when misexpressed following genetic alterations. We propose that the nontranscriptional control of DNA replication uncovered here for LMO2 may be a more common function of oncogenic transcription factors than previously appreciated. Oncogenic transcription factors are commonly activated in acute leukemias and subvert normal gene expression networks to reprogram hematopoietic progenitors into preleukemic stem cells, as exemplified by LIM-only 2 (LMO2) in T-cell acute lymphoblastic leukemia (T-ALL). Whether or not these oncoproteins interfere with other DNA-dependent processes is largely unexplored. Here, we show that LMO2 is recruited to DNA replication origins by interaction with three essential replication enzymes: DNA polymerase delta (POLD1), DNA primase (PRIM1), and minichromosome 6 (MCM6). Furthermore, tethering LMO2 to synthetic DNA sequences is sufficient to transform these sequences into origins of replication. We next addressed the importance of LMO2 in erythroid and thymocyte development, two lineages in which cell cycle and differentiation are tightly coordinated. Lowering LMO2 levels in erythroid progenitors delays G1-S progression and arrests erythropoietin-dependent cell growth while favoring terminal differentiation. Conversely, ectopic expression in thymocytes induces DNA replication and drives these cells into cell cycle, causing differentiation blockade. Our results define a novel role for LMO2 in directly promoting DNA synthesis and G1-S progression.
Journal of Clinical Investigation | 2016
Bastien Gerby; Diogo Veiga; Jana Krosl; Sami Nourreddine; Julianne Ouellette; André Haman; Geneviève Lavoie; Iman Fares; Mathieu Tremblay; Véronique Litalien; Elizabeth Ottoni; Milena Kosic; Dominique Geoffrion; Joel Ryan; Paul S. Maddox; Jalila Chagraoui; Anne Marinier; Josée Hébert; Guy Sauvageau; Benjamin H. Kwok; Philippe P. Roux; Trang Hoang
Current chemotherapies for T cell acute lymphoblastic leukemia (T-ALL) efficiently reduce tumor mass. Nonetheless, disease relapse attributed to survival of preleukemic stem cells (pre-LSCs) is associated with poor prognosis. Herein, we provide direct evidence that pre-LSCs are much less chemosensitive to existing chemotherapy drugs than leukemic blasts because of a distinctive lower proliferative state. Improving therapies for T-ALL requires the development of strategies to target pre-LSCs that are absolutely dependent on their microenvironment. Therefore, we designed a robust protocol for high-throughput screening of compounds that target primary pre-LSCs maintained in a niche-like environment, on stromal cells that were engineered for optimal NOTCH1 activation. The multiparametric readout takes into account the intrinsic complexity of primary cells in order to specifically monitor pre-LSCs, which were induced here by the SCL/TAL1 and LMO1 oncogenes. We screened a targeted library of compounds and determined that the estrogen derivative 2-methoxyestradiol (2-ME2) disrupted both cell-autonomous and non-cell-autonomous pathways. Specifically, 2-ME2 abrogated pre-LSC viability and self-renewal activity in vivo by inhibiting translation of MYC, a downstream effector of NOTCH1, and preventing SCL/TAL1 activity. In contrast, normal hematopoietic stem/progenitor cells remained functional. These results illustrate how recapitulating tissue-like properties of primary cells in high-throughput screening is a promising avenue for innovation in cancer chemotherapy.
Nature Communications | 2017
Matthew J. Smith; Elizabeth Ottoni; Noboru Ishiyama; Marilyn Goudreault; André Haman; Claus Meyer; Monika Tucholska; Geneviève M. C. Gasmi-Seabrook; Serena Menezes; Rob C. Laister; Mark D. Minden; Rolf Marschalek; Anne-Claude Gingras; Trang Hoang; Mitsuhiko Ikura
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.Several rearrangements of the MLL gene are associated with acute leukemia, including the fusion of MLL with a RAS effector protein, AF6. Here the authors show that the truncated AF6 can induce AF6-MLL dimerization and drive its oncogenic activity.