Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Lieber is active.

Publication


Featured researches published by André Lieber.


Nature Medicine | 2003

CD46 is a cellular receptor for group B adenoviruses.

Anuj Gaggar; Dmitry M. Shayakhmetov; André Lieber

Group B adenoviruses, a subgenus of human Adenoviridae, are associated with a variety of often-fatal illnesses in immunocompromised individuals, including bone marrow transplant recipients and cancer and AIDS patients. Recently, group B adenovirus derivatives have gained interest as attractive gene therapy vectors because they can transduce target tissues, such as hematopoietic stem cells, dendritic cells and malignant tumor cells, that are refractory to infection by commonly used adenoviral vectors. Whereas many adenoviruses infect cells through the coxsackievirus and adenovirus receptor (CAR), group B adenoviruses use an alternate, as-yet-unidentified cellular attachment receptor. Using mass spectrometric analysis of proteins interacting with a group B fiber, we identified human CD46 as a cellular attachment receptor for most group B adenoviruses. We show that ectopic expression of human CD46 rendered nonhuman cells susceptible to infection with group B viruses in vitro and in vivo. In addition, both siRNA-mediated knockdown of CD46 and a soluble form of CD46 blocked infection of human cell lines and primary human cells. The discovery that group B adenoviruses use CD46, a ubiquitously expressed complement regulatory protein, as a cellular attachment receptor elucidates the diverse clinical manifestation of group B virus infections, and bears directly on the application of these vectors for gene therapy.


Journal of Virology | 2000

Efficient Gene Transfer into Human CD34+ Cells by a Retargeted Adenovirus Vector

Dmitry M. Shayakhmetov; Thalia Papayannopoulou; George Stamatoyannopoulos; André Lieber

ABSTRACT Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and αv integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34+ cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34+ cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an αv integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34+ cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34+cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34+ cells expressing αv integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34+ cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34+ cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34+ c-Kit+cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34+ c-Kit+ cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells.


Journal of Virology | 2005

Adenovirus Binding to Blood Factors Results in Liver Cell Infection and Hepatotoxicity

Dmitry M. Shayakhmetov; Anuj Gaggar; Shaoheng Ni; Zong Yi Li; André Lieber

ABSTRACT Adenoviruses (Ad) are efficient vehicles for gene delivery in vitro and in vivo. Therefore, they are a promising tool in gene therapy, particularly in the treatment of cancer and cardiovascular diseases. However, preclinical and clinical studies undertaken during the last decade have revealed a series of problems that limit both the safety and efficacy of Ad vectors, specifically after intravenous application. Major obstacles to clinical use include innate toxicity and Ad sequestration by nontarget tissues. The factors and mechanisms underlying these processes are poorly understood. The majority of intravenously injected Ad particles are sequestered by the liver, which in turn causes an inflammatory response characterized by acute transaminitis and vascular damage. Here, we describe a novel pathway that is used by Ad for infection of hepatocytes and Kupffer cells upon intravenous virus application in mice. We found that blood factors play a major role in targeting Ad vectors to hepatic cells. We demonstrated that coagulation factor IX and complement component C4-binding protein can bind the Ad fiber knob domain and provide a bridge for virus uptake through cell surface heparan sulfate proteoglycans and low-density lipoprotein receptor-related protein. An Ad vector, Ad5mut, which contained mutations in the fiber knob domain ablating blood factor binding, demonstrated significantly reduced infection of liver cells and liver toxicity in vivo. This study contributes to a better understanding of adenovirus-host interactions for intravenously applied vectors. It also provides a rationale for novel strategies to target adenovirus vector to specific tissues and to reduce virus-associated toxicity after systemic application.


Nature Medicine | 2011

Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14

Hongjie Wang; Zong Yi Li; Ying Liu; Jonas Persson; Ines Beyer; Thomas Möller; Dilara Koyuncu; Max R. Drescher; Robert Strauss; Xiao Bing Zhang; James K. Wahl; Nicole Urban; Charles W. Drescher; Akseli Hemminki; Pascal Fender; André Lieber

We have identified desmoglein-2 (DSG-2) as the primary high-affinity receptor used by adenoviruses Ad3, Ad7, Ad11 and Ad14. These serotypes represent key human pathogens causing respiratory and urinary tract infections. In epithelial cells, adenovirus binding of DSG-2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This opening improves access to receptors, for example, CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDds), formed by excess amounts of viral capsid proteins, penton base and fiber during viral replication, can trigger DSG-2–mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDds. Our findings shed light on adenovirus biology and pathogenesis and may have implications for cancer therapy.


Journal of Virology | 2000

Dependence of Adenovirus Infectivity on Length of the Fiber Shaft Domain

Dmitry M. Shayakhmetov; André Lieber

ABSTRACT One of the objectives in adenovirus (Ad) vector development is to target gene delivery to specific cell types. Major attention has been given to modification of the Ad fiber knob, which is thought to determine virus tropism. However, among the human Ad serotypes with different tissue tropisms, not only the knob but also the length of the fiber shaft domain varies significantly. In this study we attempted to delineate the role of fiber length in coxsackievirus-adenovirus receptor (CAR)- and non-CAR-mediated infection. A series of Ad serotype 5 (Ad5) capsid-based vectors containing long or short fibers with knob domains derived from Ad5, Ad9, or Ad35 was constructed and tested in adsorption, internalization, and transduction studies. For Ad5 or Ad9 knob-possessing vectors, a long-shafted fiber was critical for efficient adsorption/internalization and transduction of CAR/αv integrin-expressing cells. Ad5 capids containing short CAR-recognizing fibers were affected in cell adsorption and infection. In contrast, for the chimeric vectors possessing Ad35 knobs, which enter cells by a CAR/αv integrin-independent pathway, fiber shaft length had no significant influence on binding or infectibility on tested cells. The weak attachment of short-shafted Ad5 or Ad9 knob-possessing vectors seems to be causally associated with a charge-dependent repulsion between Ad5 capsid and acidic cell surface proteins. The differences between short- and long-shafted vectors in attachment or infection were abrogated by preincubation of cells with polycations. This study demonstrates that the fiber-CAR interaction is not the sole determinant for tropism of Ad vectors containing chimeric fibers. CAR- and αv integrin-mediated infections are influenced by other factors, including the length of the fiber shaft.


Journal of Virology | 2004

Analysis of Adenovirus Sequestration in the Liver, Transduction of Hepatic Cells, and Innate Toxicity after Injection of Fiber-Modified Vectors

Dmitry M. Shayakhmetov; Zong Yi Li; Shaoheng Ni; André Lieber

ABSTRACT After intravenous administration, adenovirus (Ad) vectors are predominantly sequestered by the liver. Delineating the mechanisms for Ad accumulation in the liver is crucial for a better understanding of Ad clearance and Ad-associated innate toxicity. To help address these issues, in this study, we used Ad vectors with different fiber shaft lengths and either coxsackievirus-Ad receptor (CAR)-interacting Ad serotype 9 (Ad9) or non-CAR-interacting Ad35 fiber knob domains. We analyzed the kinetics of Ad vector accumulation in the liver, uptake into hepatocytes and Kupffer cells, and induction of cytokine expression and release in response to systemic vector application. Immediately after intravenous injection, all Ad vectors accumulated equally efficiently in the liver; however, only genomes of long-shafted Ads were maintained in the liver tissue over time. We found that Kupffer cell uptake of long-shafted Ads was mediated by the fiber knob domain and was CAR independent. The short-shafted Ads were unable to efficiently interact with hepatocellular receptors and were not taken up by Kupffer cells. Moreover, our studies indicated that Kupffer cells were not the major reservoir for the observed accumulation of Ads (used in this study) in the liver within the first 30 min after virus infusion. The lower level of liver cell transduction by short-shafted Ads correlated with a significantly reduced inflammatory anti-Ad response as well as liver damage induced by the systemic administration of these vectors. This study contributes to a better understanding of the biology of systemically applied Ad and will help in designing safer vectors that can efficiently transduce target tissues.


Journal of Virology | 2006

A New Group B Adenovirus Receptor Is Expressed at High Levels on Human Stem and Tumor Cells

Sebastian Tuve; Hongjie Wang; Carol B. Ware; Ying Liu; Anuj Gaggar; Kathrin Bernt; Dmitry M. Shayakhmetov; Zong-Yi Li; Robert Strauss; Daniel Stone; André Lieber

ABSTRACT CD46 is used by human group B adenoviruses (Ads) as a high-affinity attachment receptor. Here we show evidence that several group B Ads utilize an additional receptor for infection of human cells, which is different from CD46. We tentatively named this receptor receptor X. Competition studies with unlabeled and labeled Ads, recombinant Ad fiber knobs, and soluble CD46 and CD46 antibodies revealed three different subgroups of group B Ads, in terms of their receptor usage. Group I (Ad16, -21, -35, and -50) nearly exclusively uses CD46. Group II (Ad3, -7p, and -14) utilizes receptor X and not CD46. Group III (Ad11p) uses both CD46 and the alternative receptor X. Interaction of group II and III Ads with receptor X occurs via the fiber knob. Receptor X is an abundantly expressed glycoprotein that interacts with group II and III Ads at relatively low affinity in a Ca2+-dependent manner. This receptor is expressed at high levels on human mesenchymal and undifferentiated embryonic stem cells, as well as on human cancer cell lines. These findings have practical implications for stem cell and gene therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Adenovirus vector vaccination induces expansion of memory CD4 T cells with a mucosal homing phenotype that are readily susceptible to HIV-1

Adel Benlahrech; Julian D. Harris; Andrea Meiser; Timos Papagatsias; Julia Hornig; Peter Hayes; André Lieber; Takis Athanasopoulos; Veronique Bachy; Eszter Csomor; Rod Daniels; Kerry D. Fisher; Frances Gotch; Len Seymour; Km Logan; Romina Barbagallo; Linda Klavinskis; George Dickson; Steven Patterson

In the recently halted HIV type 1 (HIV-1) vaccine STEP trial, individuals that were seropositive for adenovirus serotype 5 (Ad5) showed increased rates of HIV-1 infection on vaccination with an Ad5 vaccine. We propose that this was due to activation and expansion of Ad5-specific mucosal-homing memory CD4 T cells. To test this hypothesis, Ad5 and Ad11 antibody titers were measured in 20 healthy volunteers. Dendritic cells (DCs) from these individuals were pulsed with replication defective Ad5 or Ad11 and co-cultured with autologous lymphocytes. Cytokine profiles, proliferative capacity, mucosal migration potential, and susceptibility to HIV infection of the adenovirus-stimulated memory CD4 T cells were measured. Stimulation of T cells from healthy Ad5-seropositive but Ad11-seronegative individuals with Ad5, or serologically distinct Ad11 vectors induced preferential expansion of adenovirus memory CD4 T cells expressing α4β7 integrins and CCR9, indicating a mucosal-homing phenotype. CD4 T-cell proliferation and IFN-γ production in response to Ad stimulation correlated with Ad5 antibody titers. However, Ad5 serostatus did not correlate with total cytokine production upon challenge with Ad5 or Ad11. Expanded Ad5 and Ad11 memory CD4 T cells showed an increase in CCR5 expression and higher susceptibility to infection by R5 tropic HIV-1. This suggests that adenoviral-based vaccination against HIV-1 in individuals with preexisting immunity against Ad5 results in preferential expansion of HIV-susceptible activated CD4 T cells that home to mucosal tissues, increases the number of virus targets, and leads to a higher susceptibility to HIV acquisition.


Gene Therapy | 2000

Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo

D S Steinwaerder; André Lieber

Recombinant adenoviruses (Ad) are attractive vectors for gene transfer in vitro and in vivo. However, the widely used E1-deleted vectors as well as newer generation vectors contain viral sequences, including transcriptional elements for viral gene expression. These viral regulatory elements can interfere with heterologous promoters used to drive transgene expression and may impair tissue-specific or inducible transgene expression. This study demonstrates that the activity of a metal-inducible promoter is affected by Ad sequences both upstream and downstream of the transgene cassette in both orientations. Interference with expression from the heterologous promoter was particularly strong by viral regulatory elements located within Ad sequences nucleotides 1–341. This region is present in all recombinant Ad vectors, including helper-dependent vectors. An insulator element derived from the chicken γ-globin locus (HS-4) was employed to shield the inducible promoter from viral enhancers as tested after gene transfer with first-generation Ad vectors in vitro and in vivo. Optimal shielding was obtained when the transgene expression cassette was flanked on both sides by HS-4 elements, except for when the HS-4 element was placed in 3′→5′ orientation in front of the promoter. The insulators reduced basal expression to barely detectable levels in the non-induced stage, and allowed for induction factors of approximately 40 and approximately 230 in vitro and in vivo, respectively. Induction ratios from Ad vectors without insulators were approximately 40-fold lower in vitro and approximately 15-fold lower in vivo. This study proves the potential of insulators to improve inducible or tissue-specific gene expression from adenovirus vectors, which is important for studying gene functions as well as for gene therapy approaches. Furthermore, our data show that insulators exert enhancer-blocking effects in episomal DNA.


Gene Therapy | 2001

Efficient infection of primitive hematopoietic stem cells by modified adenovirus.

Patricia Yotnda; H Onishi; Helen E. Heslop; D Shayakhmetov; André Lieber; Malcolm K. Brenner; Alan R. Davis

Almost all studies of adenoviral vector-mediated gene transfer have made use of the adenovirus type 5 (Ad5). Unfortunately, Ad5 has been ineffective at infecting hematopoietic progenitor cells (HPC). Chimeric Ad5/F35 vectors that have been engineered to substitute the shorter-shafted fiber protein from Ad35 can efficiently infect committed hematopoietic cells and we now show highly effective gene transfer to primitive progenitor subsets. An Ad5GFP and Ad5/F35GFP vector was added to CD34+ and CD34−lineage− (lin−) HPC. Only 5–20% of CD34+ and CD34−lin− cells expressed GFP after Ad5 exposure. In contrast, with the Ad5/F35 vector, 30–70% of the CD34+, 50–70% of the CD34−lin− and up to 60% of the CD38− HPC expressed GFP and there was little evident cellular toxicity. Because of these improved results, we also analyzed the ability of Ad5/F35 virus to infect the hoechst negative ‘side population’ (SP) of marrow cells, which appear to be among the very earliest multipotent HPC. Between 51% and 80% of marrow SP cells expressed GFP. The infected populations retained their ability to form colonies in two short-term culture systems, with no loss of viability. We also studied the transfer and expression of immunomodulatory genes, CD40L (cell surface expression) and interleukin-2 (secreted). Both were expressed at immunomodulatory levels for >5 days. The ability of Ad5/F35 to deliver transgenes to primitive HPC with high efficiency and low toxicity in the absence of growth factors provides an improved means of studying the consequences of transient gene expression in these cells.

Collaboration


Dive into the André Lieber's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongjie Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Shaoheng Ni

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Zong-Yi Li

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Zong Yi Li

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Strauss

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Roma Yumul

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Anuj Gaggar

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge