Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roma Yumul is active.

Publication


Featured researches published by Roma Yumul.


PLOS Pathogens | 2008

Role of Cellular Heparan Sulfate Proteoglycans in Infection of Human Adenovirus Serotype 3 and 35

Sebastian Tuve; Hongjie Wang; Jeffrey Daniel Jacobs; Roma Yumul; David F. Smith; André Lieber

Species B human adenoviruses (Ads) are increasingly associated with outbreaks of acute respiratory disease in U.S. military personnel and civil population. The initial interaction of Ads with cellular attachment receptors on host cells is via Ad fiber knob protein. Our previous studies showed that one species B Ad receptor is the complement receptor CD46 that is used by serotypes 11, 16, 21, 35, and 50 but not by serotypes 3, 7, and 14. In this study, we attempted to identify yet-unknown species B cellular receptors. For this purpose we used recombinant Ad3 and Ad35 fiber knobs in high-throughput receptor screening methods including mass spectrometry analysis and glycan arrays. Surprisingly, we found that the main interacting surface molecules of Ad3 fiber knob are cellular heparan sulfate proteoglycans (HSPGs). We subsequently found that HSPGs acted as low-affinity co-receptors for Ad3 but did not represent the main receptor of this serotype. Our study also revealed a new CD46-independent infection pathway of Ad35. This Ad35 infection mechanism is mediated by cellular HSPGs. The interaction of Ad35 with HSPGs is not via fiber knob, whereas Ad3 interacts with HSPGs via fiber knob. Both Ad3 and Ad35 interacted specifically with the sulfated regions within HSPGs that have also been implicated in binding physiologic ligands. In conclusion, our findings show that Ad3 and Ad35 directly utilize HSPGs as co-receptors for infection. Our data suggest that adenoviruses evolved to simulate the presence of physiologic HSPG ligands in order to increase infection.


Journal of Virology | 2011

Multimerization of adenovirus serotype 3 fiber knob domains is required for efficient binding of virus to desmoglein 2 and subsequent opening of epithelial junctions.

Hongjie Wang; Zong Yi Li; Roma Yumul; Stephanie Lara; Akseli Hemminki; Pascal Fender; André Lieber

ABSTRACT Recently, we identified desmoglein 2 (DSG2) as the main receptor for a group of species B adenoviruses (Ads), including Ad3, a serotype that is widely distributed in the human population (H. Wang et al., Nat. Med. 17:96–104, 2011). In this study, we have attempted to delineate structural details of the Ad3 interaction with DSG2. For CAR- and CD46-interacting Ad serotypes, attachment to cells can be completely blocked by an excess of recombinant fiber knob protein, while soluble Ad3 fiber knob only inefficiently blocks Ad3 infection. We found that the DSG2-interacting domain(s) within Ad3 is formed by several fiber knob domains that have to be in the spatial constellation that is present in viral particles. Based on this finding, we generated a small recombinant, self-dimerizing protein containing the Ad3 fiber knob (Ad3-K/S/Kn). Ad3-K/S/Kn bound to DSG2 with high affinity and blocked Ad3 infection. We demonstrated by confocal immunofluorescence and transmission electron microscopy analyses that Ad3-K/S/Kn, through its binding to DSG2, triggered the transient opening of intercellular junctions in epithelial cells. The pretreatment of epithelial cells with Ad3-K/S/Kn resulted in increased access to receptors that are localized in or masked by epithelial junctions, e.g., CAR or Her2/neu. Ad3-K/S/Kn treatment released CAR from tight junctions and thus increased the transduction of epithelial cells by a serotype Ad5-based vector. Furthermore, the pretreatment of Her2/neu-positive breast cancer cells with Ad3-K/S/Kn increased the killing of cancer cells by the Her2/neu-targeting monoclonal antibody trastuzumab (Herceptin). This study widens our understanding of how Ads achieve high avidity to their receptors and the infection of epithelial tissue. The small recombinant protein Ad3-K/S/Kn has practical implications for the therapy of epithelial cancer and gene/drug delivery to normal epithelial tissues.


Cancer Research | 2011

Epithelial Junction Opener JO-1 Improves Monoclonal Antibody Therapy of Cancer

Ines Beyer; Ruan van Rensburg; Robert Strauss; Zong-Yi Li; Hongjie Wang; Jonas Persson; Roma Yumul; Qinghua Feng; Hui Song; Jiri Bartek; Pascal Fender; André Lieber

The efficacy of monoclonal antibodies (mAb) used to treat solid tumors is limited by intercellular junctions which tightly link epithelial tumor cells to each another. In this study, we define a small, recombinant adenovirus serotype 3-derived protein, termed junction opener 1 (JO-1), which binds to the epithelial junction protein desmoglein 2 (DSG2). In mouse xenograft models employing Her2/neu- and EGFR-positive human cancer cell lines, JO-1 mediated cleavage of DSG2 dimers and activated intracellular signaling pathways which reduced E-cadherin expression in tight junctions. Notably, JO-1-triggered changes allowed for increased intratumoral penetration of the anti-Her2/neu mAb trastuzumab (Herceptin) and improved access to its target receptor, Her2/neu, which is partly trapped in tight junctions. This effect translated directly into increased therapeutic efficacy of trastuzumab in mouse xenograft models using breast, gastric, and ovarian cancer cells that were Her2/neu-positive. Furthermore, combining JO-1 with the EGFR-targeting mAb cetuximab (Erbitux) greatly improved therapeutic outcomes in a metastatic model of EGFR-positive lung cancer. A combination of JO-1 with an approach that triggered transient degradation of tumor stroma proteins elicited eradication of tumors. Taken together, our findings offer preclinical proof of concept to employ JO-1 in combination with mAb therapy.


Vaccine | 2009

In situ adenovirus vaccination engages T effector cells against cancer

Sebastian Tuve; Ying Liu; Khajornsak Tragoolpua; Jeffrey Daniel Jacobs; Roma Yumul; Zong Yi Li; Robert Strauss; Karl Erik Hellström; Mary L. Disis; Steve R. Roffler; André Lieber

The efficacy of cancer immunotherapy is limited because of central and peripheral immune tolerance towards tumor-antigens. We propose a novel approach based on the fact that the immune system has not evolved tolerance towards adenoviruses (Ads) and that Ads have not evolved efficient mechanisms for immune-escape. The host-response to intratumoral Ad-vector injection in mice that were immunologically tolerant to neu-positive syngeneic mammary-cancer (MMC) was investigated. Intratumoral injection with replication-deficient, transgene-devoid Ad induced immune responses at two different anatomical sites: the tumor-draining lymph nodes and the tumor microenvironment. The lymph nodes supported the generation of both neu- and Ad-specific T effector cells, while inside the tumor microenvironment only Ad-specific T cells expanded. Importantly, Ad-specific T cells were anti-tumor-reactive despite the presence of active regulatory T cell-mediated immune tolerance inside MMC tumors and anti-tumor efficacy of Ad was increased by pre-immunization against Ad despite the production of Ad-neutralizing antibodies.


Molecular Therapy | 2011

Controlled extracellular matrix degradation in breast cancer tumors improves therapy by trastuzumab

Ines Beyer; Zong-Yi Li; Jonas Persson; Ying Liu; Ruan van Rensburg; Roma Yumul; Xiao Bing Zhang; Mien Chie Hung; André Lieber

Extracellular matrix (ECM) in solid tumors affects the effectiveness of therapeutics through blocking of intratumoral diffusion and/or physical masking of target receptors on malignant cells. In immunohistochemical studies of tumor sections from breast cancer patients and xenografts, we observed colocalization of ECM proteins and Her2/neu, a tumor-associated antigen that is the target for the widely used monoclonal antibody trastuzumab (Herceptin). We tested whether intratumoral expression of the peptide hormone relaxin (Rlx) would result in ECM degradation and the improvement of trastuzumab therapy. As viral gene delivery into epithelial tumors with extensive tumor ECM is inefficient, we used a hematopoietic stem cell (HSC)-based approach to deliver the Rlx gene to the tumor. In mouse models with syngeneic breast cancer tumors, HSC-mediated intratumoral Rlx expression resulted in a decrease of ECM proteins and enabled control of tumor growth. Moreover, in a model with Her2/neu-positive BT474-M1 tumors and more treatment-refractory tumors derived from HCC1954 cells, we observed a significant delay of tumor growth when trastuzumab therapy was combined with Rlx expression. Our results have implications for antibody therapy of cancer as well as for other anticancer treatment approaches that are based on T-cells or encapsulated chemotherapy drugs.


Clinical Cancer Research | 2012

Coadministration of Epithelial Junction Opener JO-1 Improves the Efficacy and Safety of Chemotherapeutic Drugs

Ines Beyer; Hua Cao; Jonas Persson; Hui Song; Maximilian Richter; Qinghua Feng; Roma Yumul; Ruan van Rensburg; Zong-Yi Li; Ronald J. Berenson; Darrick Carter; Steve R. Roffler; Charles W. Drescher; André Lieber

Purpose: Epithelial junctions between tumor cells inhibit the penetration of anticancer drugs into tumors. We previously reported on recombinant adenovirus serotype 3–derived protein (JO-1), which triggers transient opening of intercellular junctions in epithelial tumors through binding to desmoglein 2 (DSG2), and enhances the antitumor effects of several therapeutic monoclonal antibodies. The goal of this study was to evaluate whether JO-1 cotherapy can also improve the efficacy of chemotherapeutic drugs. Experimental Design: The effect of intravenous application of JO-1 in combination with several chemotherapy drugs, including paclitaxel/Taxol, nanoparticle albumin–bound paclitaxel/Abraxane, liposomal doxorubicin/Doxil, and irinotecan/Camptosar, was tested in xenograft models for breast, colon, ovarian, gastric and lung cancer. Because JO-1 does not bind to mouse cells, for safety studies with JO-1, we also used human DSG2 (hDSG2) transgenic mice with tumors that overexpressed hDSG2. Results: JO-1 increased the efficacy of chemotherapeutic drugs, and in several models overcame drug resistance. JO-1 treatment also allowed for the reduction of drug doses required to achieve antitumor effects. Importantly, JO-1 coadmininstration protected normal tissues, including bone marrow and intestinal epithelium, against toxic effects that are normally associated with chemotherapeutic agents. Using the hDSG2-transgenic mouse model, we showed that JO-1 predominantly accumulates in tumors. Except for a mild, transient diarrhea, intravenous injection of JO-1 (2 mg/kg) had no critical side effects on other tissues or hematologic parameters in hDSG2-transgenic mice. Conclusions: Our preliminary data suggest that JO-1 cotherapy has the potential to improve the therapeutic outcome of cancer chemotherapy. Clin Cancer Res; 18(12); 3340–51. ©2012 AACR.


Journal of Virology | 2012

A New Human DSG2-Transgenic Mouse Model for Studying the Tropism and Pathology of Human Adenoviruses

Hongjie Wang; Ines Beyer; Jonas Persson; Hui Song; Zong-Yi Li; Maximilian Richter; Hua Cao; Ruan van Rensburg; Xiaoying Yao; Kelly L. Hudkins; Roma Yumul; Xiao Bing Zhang; Mujun Yu; Pascal Fender; Akseli Hemminki; André Lieber

ABSTRACT We have recently reported that a group of human adenoviruses (HAdVs) uses desmoglein 2 (DSG2) as a receptor for infection. Among these are the widely distributed serotypes HAdV-B3 and HAdV-B7, as well as a newly emerged strain derived from HAdV-B14. These serotypes do not infect rodent cells and could not up until now be studied in small-animal models. We therefore generated transgenic mice containing the human DSG2 locus. These mice expressed human DSG2 (hDSG2) at a level and in a pattern similar to those found for humans and nonhuman primates. As an initial application of hDSG2-transgenic mice, we used a green fluorescent protein (GFP)-expressing HAdV-B3 vector (Ad3-GFP) and studied GFP transgene expression by quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemistry subsequent to intranasal and intravenous virus application. After intranasal application, we found efficient transduction of bronchial and alveolar epithelial cells in hDSG2-transgenic mice. Intravenous Ad3-GFP injection into hDSG2-transgenic mice resulted in hDSG2-dependent transduction of epithelial cells in the intestinal and colon mucosa. Our findings give an explanation for clinical symptoms associated with infection by DSG2-interacting HAdVs and provide a rationale for using Ad3-derived vectors in gene therapy.


Angewandte Chemie | 2016

Virus‐Inspired Polymer for Efficient In Vitro and In Vivo Gene Delivery

Yilong Cheng; Roma Yumul; Suzie H. Pun

Clinical translation of nucleic acids drugs has been stunted by limited delivery options. Herein, we report a synthetic polymer designed to mimic viral mechanisms of delivery called VIPER (virus-inspired polymer for endosomal release). VIPER is composed of a polycation block for condensation of nucleic acids, and a pH-sensitive block for acid-triggered display of a lytic peptide to promote trafficking to the cell cytosol. VIPER shows superior efficiencies compared to commercial agents when delivering genes to multiple immortalized cell lines. Importantly, in murine models, VIPER facilitates effective gene transfer to solid tumors.


Cancer Gene Therapy | 2011

Adenovirus-mediated intratumoral expression of immunostimulatory proteins in combination with systemic Treg inactivation induces tumor-destructive immune responses in mouse models

Ying Liu; Tuve S; Jonas Persson; Ines Beyer; Roma Yumul; Zong-Yi Li; Tragoolpua K; Karl Erik Hellström; Steve R. Roffler; André Lieber

Tumor-associated antigens (TAAs) include overexpressed self-antigens (for example, Her2/neu) and tumor virus antigens (for example, HPV-16 E6/E7). Although in cancer patients, TAA-specific CD4+ and CD8+ cells are often present, they are not able to control tumor growth. In recent studies, it became apparent that tumor site-located immune evasion mechanisms contribute to this phenomenon and that regulatory T cells have a major role. We tested in Her2/neu+ breast cancer and HPV-16 E6/E7+ cervical cancer mouse models, whether intratumoral expression of immunostimulatory proteins (ISPs), for example, recombinant antibodies (αCTLA-4, αCD137, αCD3), cyto/chemokines (IL-15, LIGHT, mda-7) and costimulatory ligands (CD80), through adenovirus(Ad)-mediated gene transfer would overcome resistance. In both the breast and cervical cancer model, none of the Ad.ISP vectors displayed a significant therapeutic effect when compared with an Ad vector that lacked a transgene (Ad.zero). However, the combination of Ad.ISP vectors with systemic T regulatory (Treg) depletion, using anti-CD25 mAb (breast cancer model) or low-dose cyclophosphamide (cervical cancer model) resulted in a significant delay of tumor growth in mice treated with Ad.αCTLA4. In the cervical cancer model, we also demonstrated the induction of a systemic antitumor immune response that was able to delay the growth of distant tumors. Ad.αCTLA4-mediated tumor-destructive immune responses involved NKT and CD8+ T cells. In both models no autoimmune reactions were observed. This study shows that Ad.αCTLA4 in combination with systemic Treg depletion has potentials in the immunotherapy of cancer.


Journal of Virology | 2013

Structural and Functional Studies on the Interaction of Adenovirus Fiber Knobs and Desmoglein 2

Hongjie Wang; Roma Yumul; Hua Cao; Liang Ran; Xiaolong Fan; Maximilian Richter; Forrest Epstein; Julie Gralow; Chloe Zubieta; Pascal Fender; André Lieber

ABSTRACT Human adenovirus (Ad) serotypes Ad3, Ad7, Ad11, and Ad14, as well as a recently emerged strain of Ad14 (Ad14p1), use the epithelial junction protein desmoglein 2 (DSG2) as a receptor for infection. Unlike Ad interaction with CAR and CD46, structural details for Ad binding to DSG2 are still elusive. Using an approach based on Escherichia coli expression libraries of random Ad3 and Ad14p1 fiber knob mutants, we identified amino acid residues that, when mutated individually, ablated or reduced Ad knob binding to DSG2. These residues formed three clusters inside one groove at the extreme distal end of the fiber knob. The Ad3 fiber knob mutant library was also used to identify variants with increased affinity to DSG2. We found a number of mutations within or near the EF loop of the Ad3 knob that resulted in affinities to DSG2 that were several orders of magnitude higher than those to the wild-type Ad3 knob. Crystal structure analysis of one of the mutants showed that the introduced mutations make the EF loop more flexible, which might facilitate the interaction with DSG2. Our findings have practical relevance for cancer therapy. We have recently reported that an Ad3 fiber knob-containing recombinant protein (JO-1) is able to trigger opening of junctions between epithelial cancer cells which, in turn, greatly improved the intratumoral penetration and efficacy of therapeutic agents (I. Beyer, et al., Clin. Cancer Res. 18:3340–3351, 2012; I. Beyer, et al., Cancer Res. 71:7080–7090, 2011). Here, we show that affinity-enhanced versions of JO-1 are therapeutically more potent than the parental protein in a series of cancer models.

Collaboration


Dive into the Roma Yumul's collaboration.

Top Co-Authors

Avatar

André Lieber

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Hongjie Wang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonas Persson

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ines Beyer

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Darrick Carter

Infectious Disease Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zong-Yi Li

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Anja Ehrhardt

Witten/Herdecke University

View shared research outputs
Researchain Logo
Decentralizing Knowledge