Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Padilla is active.

Publication


Featured researches published by André Padilla.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Structure-based discovery of an inhibitor of Arf activation by Sec7 domains through targeting of protein-protein complexes

Julien Viaud; Mahel Zeghouf; Hélène Barelli; Jean-Christophe Zeeh; André Padilla; Bernard Guibert; Pierre Chardin; Catherine A. Royer; Jacqueline Cherfils; Alain Chavanieu

Small molecules that produce nonfunctional protein–protein complexes are an alternative to competitive inhibitors for the inhibition of protein functions. Here we target the activation of the small GTP-binding protein Arf1, a major regulator of membrane traffic, by the Sec7 catalytic domain of its guanine nucleotide exchange factor ARNO. The crystal structure of the Arf1-GDP/ARNO complex, which initiates the exchange reaction, was used to discover an inhibitor, LM11, using in silico screening of a flexible pocket near the Arf1/ARNO interface. Using fluorescence kinetics and anisotropy, NMR spectroscopy and mutagenesis, we show that LM11 acts following a noncompetitive mechanism in which the inhibitor targets both Arf1-GDP and the Arf1-GDP/ARNO complex and produces a nonfunctional Arf-GDP/ARNO complex whose affinity is similar to that of the native complex. In addition, LM11 recognizes features of both Arf and ARNO near the Arf/Sec7 interface, a characteristic reminiscent of the paradigm interfacial inhibitor Brefeldin A. We then show that LM11 is a cell-active inhibitor that impairs Arf-dependent trafficking structures at the Golgi. Furthermore, LM11 inhibits ARNO-dependent migration of Madin–Darby canine kidney (MDCK) cells, demonstrating that ARNO is a target of LM11 in cells. Remarkably, LM11 inhibits the activation of Arf1 but not Arf6 in vitro, pointing to a possible synergy between Arf1 and Arf6 activation by ARNO in cell migration. Our design method shows that flexible regions in protein–protein complexes provide drugable sites with the potential to develop novel tools for investigating and inhibiting signaling pathways.


Biopolymers | 2009

NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: Model of the possible lipid A-binding site

Yinshan Yang; Hélène Boze; Patrick Chemardin; André Padilla; Guy Moulin; Anchalee Tassanakajon; Martine Pugnière; Françoise Roquet; Delphine Destoumieux-Garzón; Yannick Gueguen; Evelyne Bachère; André Aumelas

The anti‐lipopolysaccharide factor ALF‐Pm3 is a 98‐residue protein identified in hemocytes from the black tiger shrimp Penaeus monodon. It was expressed in Pichia pastoris from the constitutive glyceraldehyde‐3‐phosphate dehydrogenase promoter as a folded and 15N uniformly labeled rALF‐Pm3 protein. Its 3D structure was established by NMR and consists of three α‐helices packed against a four‐stranded β‐sheet. The C34C55 disulfide bond was shown to be essential for the structure stability. By using surface plasmon resonance, we demonstrated that rALF‐Pm3 binds to LPS, lipid A and to OM®‐174, a soluble analogue of lipid A. Biophysical studies of rALF‐Pm3/LPS and rALF‐Pm3/OM®‐174 complexes indicated rather high molecular sized aggregates, which prevented us to experimentally determine by NMR the binding mode of these lipids to rALF‐Pm3. However, on the basis of striking structural similarities to the FhuA/LPS complex, we designed an original model of the possible lipid A‐binding site of ALF‐Pm3. Such a binding site, located on the ALF‐Pm3 β‐sheet and involving seven charged residues, is well conserved in ALF‐L from Limulus polyphemus and in ALF‐T from Tachypleus tridentatus. In addition, our model is in agreement with experiments showing that β‐hairpin synthetic peptides corresponding to ALF‐L β‐sheet bind to LPS. Delineating lipid A‐binding site of ALFs will help go further in the de novo design of new antibacterial or LPS‐neutralizing drugs.


PLOS Pathogens | 2015

Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi

Karine Montet de Guillen; Diana Ortiz-Vallejo; Jérôme Gracy; Elisabeth Fournier; Thomas Kroj; André Padilla

Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 β-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (M agnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5–10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.


Structure | 1998

Crystal structure of p14TCL1, an oncogene product involved in T-cell prolymphocytic leukemia, reveals a novel β-barrel topology

Françcois Hoh; Yinshan Yang; Laurent Guignard; André Padilla; Marc-Henri Stern; Jean-Marc Lhoste; Herman van Tilbeurgh

BACKGROUND Chromosome rearrangements are frequently involved in the generation of hematopoietic tumors. One type of T-cell leukemia, T-cell prolymphocytic leukemia, is consistently associated with chromosome rearrangements characterized by the juxtaposition of the TCRA locus on chromosome 14q11 and either the TCL1 gene on 14q32.1 or the MTCP1 gene on Xq28. The TCL1 gene is preferentially expressed in cells of early lymphoid lineage; its product is a 14 kDa protein (p14TCL1), expressed in the cytoplasm. p14TCL1 has strong sequence similarity with one product of the MTCP1 gene, p13MTCP1 (41% identical and 61% similar). The functions of the TCL1 and MTCP1 genes are not known yet. They have no sequence similarity to any other published sequence, including those of well-documented oncogene families responsible for leukemia. In order to gain a more fundamental insight into the role of this particular class of oncogenes, we have determined the three-dimensional structure of p14TCL1. RESULTS The crystal structure of p14TCL1 has been determined at 2.5 A resolution. The structure was solved by molecular replacement using the solution structure of p13MTCP1, revealing p14TCL1 to be an all-beta protein consisting of an eight-stranded antiparallel beta barrel with a novel topology. The barrel consists of two four-stranded beta-meander motifs, related by a twofold axis and connected by a long loop. This internal pseudo-twofold symmetry was not expected on basis of the sequence alone, but structure-based sequence analysis of the two motifs shows that they are related. The structures of p13MTCP1 and p14TCL1 are very similar, diverging only in regions that are either flexible and/or involved in crystal packing. p14TCL1 forms a tight crystallographic dimer, probably corresponding to the 28 kDa species identified in solution by gel filtration experiments. CONCLUSIONS Structural similarities between p14TCL1 and p13MTCP1 suggest that their (unknown) function may be analogous. This is confirmed by the fact that these proteins are implicated in analogous diseases. Their structure does not show similarity to other oncoproteins of known structure, confirming their classification as a novel class of oncoproteins.


Structure | 2011

Structural Insight into the Mycobacterium tuberculosis Rv0020c Protein and Its Interaction with the PknB Kinase

Christian Roumestand; Jade Leiba; Nathalie Galophe; Emmanuel Margeat; André Padilla; Yannick Bessin; Philippe Barthe; Virginie Molle; Martin Cohen-Gonsaud

The protein Rv0020c from Mycobacterium tuberculosis, also called FhaA, is one of the major substrates of the essential Ser/Thr protein kinase (STPK) PknB. The protein is composed of three domains and is phosphorylated on a unique site in its N terminus. We solved the solution structure of both N- and C-terminal domains and demonstrated that the approximately 300 amino acids of the intermediate domain are not folded. We present evidence that the FHA, a phosphospecific binding domain, of Rv0020c does not interact with the phosphorylated catalytic domains of PknB, but with the phosphorylated juxtamembrane domain that links the catalytic domain to the mycobacterial membrane. We also demonstrated that the degree and the pattern of phosphorylation of this juxtamembrane domain modulates the affinity of the substrate (Rv0020c) toward its kinase (PknB).


Journal of Biological Chemistry | 2012

Plasticity in Structural and Functional Interactions between the Phosphoprotein and Nucleoprotein of Measles Virus

Yaoling Shu; Johnny Habchi; Stéphanie Costanzo; André Padilla; Joanna Brunel; Denis Gerlier; Michael Oglesbee; Sonia Longhi

Background: Binding of the MeV C-terminal disordered domain of the nucleoprotein (NTAIL) to the X domain (XD) of the phosphoprotein mediates recruitment of the polymerase. Results: NTAIL amino acid substitutions that reduce NTAIL-XD affinity and/or NTAIL α-helical folding do not affect polymerase rates but strongly affect infectivity. Conclusion: MeV polymerase tolerates NTAIL amino acid substitutions. Significance: NTAIL sequence plays a role in optimal infectivity. The measles virus (MeV) phosphoprotein (P) tethers the polymerase to the nucleocapsid template for transcription and genome replication. Binding of P to nucleocapsid is mediated by the X domain of P (XD) and a conserved sequence (Box-2) within the C-terminal domain of the nucleoprotein (NTAIL). XD binding induces NTAIL α-helical folding, which in turn has been proposed to stabilize the polymerase-nucleocapsid complex, with cycles of binding and release required for transcription and genome replication. The current work directly assessed the relationships among XD-induced NTAIL folding, XD-NTAIL binding affinity, and polymerase activity. Amino acid substitutions that abolished XD-induced NTAIL α-helical folding were created within Box-2 of Edmonston MeV NTAIL. Polymerase activity in minireplicons was maintained despite a 35-fold decrease in XD-NTAIL binding affinity or reduction/loss of XD-induced NTAIL alpha-helical folding. Recombinant infectious virus was recovered for all mutants, and transcriptase elongation rates remained within a 1.7-fold range of parent virus. Box-2 mutations did however impose a significant cost to infectivity, reflected in an increase in the amount of input genome required to match the infectivity of parent virus. Diminished infectivity could not be attributed to changes in virion protein composition or production of defective interfering particles, where changes from parent virus were within a 3-fold range. The results indicated that MeV polymerase activity, but not infectivity, tolerates amino acid changes in the XD-binding region of the nucleoprotein. Selectional pressure for conservation of the Box-2 sequence may thus reflect a role in assuring the fidelity of polymerase functions or the assembly of viral particles required for optimal infectivity.


Journal of Virology | 2001

Biochemical Characterization of the Helper Component of Cauliflower Mosaic Virus

Eugénie Hébrard; Martin Drucker; Denis Leclerc; Thomas Hohn; Marilyne Uzest; Rémy Froissart; Jean-Marc Strub; Sarah Sanglier; Alain Van Dorsselaer; André Padilla; Gilles Labesse; Stéphane Blanc

ABSTRACT The helper component of Cauliflower mosaic virus is encoded by viral gene II. This protein (P2) is dispensable for virus replication but required for aphid transmission. The purification of P2 has never been reported, and hence its biochemical properties are largely unknown. We produced the P2 protein via a recombinant baculovirus with a His tag fused at the N terminus. The fusion protein was purified by affinity chromatography in a soluble and biologically active form. Matrix-assisted laser desorption time-of-flight mass spectrometry demonstrated that P2 is not posttranslationally modified. UV circular dichroism revealed the secondary structure of P2 to be 23% α-helical. Most α-helices are suggested to be located in the C-terminal domain. Using size exclusion chromatography and aphid transmission testing, we established that the active form of P2 assembles as a huge soluble oligomer containing 200 to 300 subunits. We further showed that P2 can also polymerize as long paracrystalline filaments. We mapped P2 domains involved in P2 self-interaction, presumably through coiled-coil structures, one of which is proposed to form a parallel trimer. These regions have previously been reported to also interact with viral P3, another protein involved in aphid transmission. Possible interference between the two types of interaction is discussed with regard to the biological activity of P2.


PLOS ONE | 2014

Structural and Biochemical Characterization of the Cop9 Signalosome CSN5/CSN6 Heterodimer

Melissa Birol; Radoslav I. Enchev; André Padilla; Florian Stengel; Ruedi Aebersold; Stéphane Betzi; Yinshan Yang; François Hoh; Matthias Peter; Christian Dumas; Aude Echalier

The Cop9 signalosome complex (CSN) regulates the functional cycle of the major E3 ubiquitin ligase family, the cullin RING E3 ubiquitin ligases (CRLs). Activated CRLs are covalently modified by the ubiquitin-like protein Nedd8 (neural precursor cell expressed developmentally down-regulated protein 8). CSN serves an essential role in myriad cellular processes by reversing this modification through the isopeptidase activity of its CSN5 subunit. CSN5 alone is inactive due to an auto-inhibited conformation of its catalytic domain. Here we report the molecular basis of CSN5 catalytic domain activation and unravel a molecular hierarchy in CSN deneddylation activity. The association of CSN5 and CSN6 MPN (for Mpr1/Pad1 N-terminal) domains activates its isopeptidase activity. The CSN5/CSN6 module, however, is inefficient in CRL deneddylation, indicating a requirement of further elements in this reaction such as other CSN subunits. A hybrid molecular model of CSN5/CSN6 provides a structural framework to explain these functional observations. Docking this model into a published CSN electron density map and using distance constraints obtained from cross-linking coupled to mass-spectrometry, we find that the C-termini of the CSN subunits could form a helical bundle in the centre of the structure. They likely play a key scaffolding role in the spatial organization of CSN and precise positioning of the dimeric MPN catalytic core.


Proteins | 2001

Structure of rat parvalbumin with deleted AB domain: Implications for the evolution of EF hand calcium-binding proteins and possible physiological relevance

Michel Thépaut; Marie-Paule Strub; Adrien Cavé; Jean-Louis Banères; Martin W. Berchtold; Christian Dumas; André Padilla

Among the EF‐hand Ca2+‐binding proteins, parvalbumin (PV) and calbindin D9k (CaB) have the function of Ca2+ buffers. They evolved from an ancestor protein through two phylogenetic pathways, keeping one pair of EF‐hands. They differ by the extra helix–loop–helix (AB domain) found in PV and by the linker between the binding sites. To investigate whether the deletion of AB in PV restores a CaB‐like structure, we prepared and solved the structure of the truncated rat PV (PVratΔ37) by X‐ray and NMR. PVratΔ37 keeps the PV fold, but is more compact, having a well‐structured linker, which differs remarkably from CaB. PvratΔ37 has no stable apo‐form, has lower affinity for Ca2+ than full‐length PV, and does not bind Mg2+, in contrast to CaB. Structural differences of the hydrophobic core are partially responsible for lowering the calcium‐binding affinity of the truncated protein. It can be concluded that the AB domain, like the linker of CaB, plays a role in structural stabilization. The AB domain of PV protects the hydrophobic core, and is required to maintain high affinity for divalent cation binding. Therefore, the AB domain possibly modulates PV buffer function. PVratΔ37 (Type PDB; Value 1G33; Service) Proteins 2001;45:117–128.


Journal of Biomolecular NMR | 1998

Solution structure of the recombinant human oncoprotein p13MTCP1.

Yinshan Yang; Laurent Guignard; André Padilla; François Hoh; Marie-Paule Strub; Marc-Henri Stern; Jean-Marc Lhoste; Christian Roumestand

The human oncoprotein p13MTCP1 is coded by the MTCP1 gene, a gene involved in chromosomal translocations associated with T-cell prolymphocytic leukemia, a rare form of human leukemia with a mature T-cell phenotype. The primary sequence of p13MTCP1 is highly and only homologous to that of p14TCL1, a product coded by the gene TCL1 which is also involved in T-cell prolymphocytic leukemia. These two proteins probably represent the first members of a new family of oncogenic proteins. We present the three-dimensional solution structure of the recombinant p13MTCP1 determined by homonuclear proton two-dimensional NMR methods at 600 MHz. After proton resonance assignments, a total of 1253 distance restraints and 64 dihedral restraints were collected. The solution structure of p13MTCP1 is presented as a set of 20 DYANA structures. The rmsd values with respect to the mean structure for the backbone and all heavy atoms for the conformer family are 1.07 ± 0.19 and 1.71 ± 0.17 Å, when the structured core of the protein (residues 11–103) is considered. The solution structure of p13MTCP1 consists of an orthogonal β-barrel, composed of eight antiparallel β-strands which present an original arrangement. The two β-pleated loops which emerge from this barrel might constitute the interaction surface with a potential molecular partner.

Collaboration


Dive into the André Padilla's collaboration.

Top Co-Authors

Avatar

François Hoh

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Yinshan Yang

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Marie-Paule Strub

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Parello

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge