André Schönichen
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by André Schönichen.
Biochimica et Biophysica Acta | 2010
André Schönichen; Matthias Geyer
The regulation of the actin cytoskeleton is a key process for the stability and motility of eukaryotic cells. Besides the Arp2/3 complex and its nucleation promoting factors, WH2 domain-containing proteins and a diverse family of formin proteins have recently been recognized as actin nucleators and potent polymerization factors of actin filaments. Formins are defined by the presence of a catalytic formin homology 2 (FH2) domain, yet, the modular domain architecture appears significantly different for the eight formin families identified in humans. A diverse picture of protein localization, interaction partners and cell specific regulation emerged, suggesting various functions of formins in the building and maintenance of actin filaments. This review focuses on the domain architecture of human formins, the regulation mechanisms of their activation and the diversity in formin cellular functions.
Journal of Biological Chemistry | 2008
Sebastian Hannemann; Ricardo Madrid; Jana Stastna; Thomas M. Kitzing; Judith E. Gasteier; André Schönichen; Jérôme Bouchet; Alberto Corsín Jiménez; Matthias Geyer; Robert Grosse; Serge Benichou; Oliver T. Fackler
Diaphanous-related formins (DRFs) mediate GTPase-triggered actin rearrangements to regulate central cellular processes, such as cell motility and cytokinesis. The DRF FHOD1 interacts with the Rho-GTPase Rac1 and mediates formation of actin stress fibers in its deregulated form; the physiologically relevant activities and molecular mechanisms of endogenous FHOD1, however, are still unknown. Here we report that FHOD1 physically associates via the N-terminal part of its FH2 domain with the central domain of ROCK1. Although FHOD1 does not affect the kinase activity of ROCK1, the DRF is an efficient substrate for phosphorylation by ROCK1. Co-expression of FHOD1 and ROCK1 results in the generation of nonapoptotic plasma membrane (PM) blebs, to which the DRF is efficiently recruited. Blebbing induced by FHOD1 and ROCK1 depends on F-actin integrity, the Rho-ROCK cascade, and Src activity and is reminiscent of the recently described PM blebs triggered by expression of Src homology 4 (SH4) domain PM targeting signals. Consistently, endogenous FHOD1 is required in SH4 domain expressing cells for efficient PM blebbing and rounded cell morphology in two-dimensional cultures or three-dimensional matrices, respectively. Efficient association of FHOD1 with ROCK1, as well as recruitment of the DRF to blebs, depends on Src activity, suggesting that the functional interaction between both proteins is regulated by Src. These results define a role for endogenous FHOD1 in SH4 domain-induced blebbing and suggest that its activity is regulated by ROCK1 in a Src-dependent manner.
Annual review of biophysics | 2013
André Schönichen; Bradley A. Webb; Matthew P. Jacobson; Diane L. Barber
Posttranslational modification is an evolutionarily conserved mechanism for regulating protein activity, binding affinity, and stability. Compared with established posttranslational modifications such as phosphorylation or ubiquitination, posttranslational modification by protons within physiological pH ranges is a less recognized mechanism for regulating protein function. By changing the charge of amino acid side chains, posttranslational modification by protons can drive dynamic changes in protein conformation and function. Addition and removal of a proton is rapid and reversible and, in contrast to most other posttranslational modifications, does not require an enzyme. Signaling specificity is achieved by only a minority of sites in proteins titrating within the physiological pH range. Here, we examine the structural mechanisms and functional consequences of proton posttranslational modification of pH-sensing proteins regulating different cellular processes.
Journal of Cell Science | 2013
André Schönichen; Hans Georg Mannherz; Elmar Behrmann; Antonina Joanna Mazur; Sonja Kühn; Unai Silván; Cora-Ann Schoenenberger; Oliver T. Fackler; Stefan Raunser; Leif Dehmelt; Matthias Geyer
Summary Formins are actin polymerization factors that are known to nucleate and elongate actin filaments at the barbed end. In the present study we show that human FHOD1 lacks actin nucleation and elongation capacity, but acts as an actin bundling factor with capping activity toward the filament barbed end. Constitutively active FHOD1 associates with actin filaments in filopodia and lamellipodia at the leading edge, where it moves with the actin retrograde flow. At the base of lamellipodia, FHOD1 is enriched in nascent, bundled actin arcs as well as in more mature stress fibers. This function requires actin-binding domains located N-terminally to the canonical FH1–FH2 element. The bundling phenotype is maintained in the presence of tropomyosin, confirmed by electron microscopy showing assembly of 5 to 10 actin filaments into parallel, closely spaced filament bundles. Taken together, our data suggest a model in which FHOD1 stabilizes actin filaments by protecting barbed ends from depolymerization with its dimeric FH2 domain, whereas the region N-terminal to the FH1 domain mediates F-actin bundling by simultaneously binding to the sides of adjacent F-actin filaments.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Sonja A. Dames; André Schönichen; Antje Schulte; Matjaz Barboric; B. Matija Peterlin; Stephan Grzesiek; Matthias Geyer
Hexim1 is a cellular protein that associates with the positive transcription elongation factor b (P-TEFb) to regulate RNA polymerase II elongation of nascent mRNA transcripts. It directly binds to Cyclin T1 of P-TEFb and inhibits the kinase activity of Cdk9, leading to an arrest of transcription elongation. Here, we report the solution structure of the Cyclin T binding domain (TBD) of Hexim1 that forms a parallel coiled-coil homodimer composed of two segments and a preceding alpha helix that folds back onto the first coiled-coil unit. NMR titration, fluorescence, and immunoprecipitation experiments revealed the binding interface to Cyclin T1, which covers a large surface on the first coiled-coil segment. Electrostatic interactions between an acidic patch on Hexim1 and positively charged residues of Cyclin T1 drive the complex formation that is confirmed by mutagenesis data on Hexim1 mediated transcription regulation in cells. Thus, our studies provide structural insights how Hexim1 recognizes the Cyclin T1 subunit of P-TEFb, which is a key step toward the regulation of transcription elongation.
Structure | 2008
Antje Schulte; Bettina Stolp; André Schönichen; Olena Pylypenko; Alexey Rak; Oliver T. Fackler; Matthias Geyer
Formins induce the nucleation and polymerization of unbranched actin filaments. They share three homology domains required for profilin binding, actin polymerization, and regulation. Diaphanous-related formins (DRFs) are activated by GTPases of the Rho/Rac family, whose interaction with the N-terminal formin domain is thought to displace a C-terminal Diaphanous-autoregulatory domain (DAD). We have determined the structure of the N-terminal domains of FHOD1 consisting of a GTPase-binding domain (GBD) and the DAD-recognition domain FH3. In contrast to the formin mDia1, the FHOD1-GBD reveals a ubiquitin superfold as found similarly in c-Raf1 or PI3 kinase. This GBD is recruited by Rac and Ras GTPases in cells and plays an essential role for FHOD1-mediated actin remodeling. The FHOD1-FH3 domain is composed of five armadillo repeats, similarly to other formins. Mutation of one residue in the predicted DAD-interaction surface efficiently activates FHOD1 in cells. These results demonstrate that DRFs have evolved different molecular solutions to govern their autoregulation and GTPase specificity.
Journal of Biological Chemistry | 2006
André Schönichen; Michael Alexander; Judith E. Gasteier; Fanny E. Cuesta; Oliver T. Fackler; Matthias Geyer
Diaphanous related formins (DRFs) are cytoskeleton remodeling proteins that mediate specific upstream GTPase signals to regulate cellular processes such as cytokinesis, cell polarity, and organelle motility. Previous work on the Rho-interacting DRF mDia has established that the biological activity of DRFs is regulated by an autoinhibitory interaction of a C-terminal diaphanous autoregulatory domain (DAD) with the DRF N terminus. This autoinhibition is released upon competitive binding of an activated GTPase to the N terminus of the DRF. Analyzing autoregulation of the Rac1-interacting DRF FHOD1, we utilized in vitro binding studies to identify a 60-amino acid DAD at the protein C terminus that recognizes an N-terminal formin homology (FH) 3 domain. Importantly, the FH3 domain of FHOD1 does not overlap with the proposed Rac1-binding domain. The FHOD1 DAD was found to contain one functional hydrophobic autoregulatory motif, while a previously uncharacterized basic cluster that is conserved in all DRF family DADs also contributed to the FH3-DAD interaction. Simultaneous mutation of both motifs efficiently released autoinhibition of FHOD1 in NIH3T3 cells resulting in the formation of actin stress fibers and increased serum response element transcription. A second putative hydrophobic autoregulatory motif N-terminal of the DAD belongs to a unique FHOD subdomain of yet undefined function. NMR structural analysis and size exclusion chromatography experiments revealed that the FHOD1 DAD is intrinsically unstructured with a tendency for a helical conformation in the hydrophobic autoregulation motif. Together, these data suggest that in FHOD1, DAD acts as signal sequence for binding to the well folded and monomeric FH3 domain and imply an activation mechanism that differs from competitive binding of Rac1 and DAD to one interaction site.
Journal of Biological Chemistry | 2012
Praveen Kumar; Michael S. Chimenti; Hayley Pemble; André Schönichen; Oliver Thompson; Matthew P. Jacobson; Torsten Wittmann
Background: EB1-recruited microtubule +TIP proteins mediate microtubule functions in interphase and mitosis. Results: CLASP2 binding to EB1 requires electrostatic interactions that are inhibited by CDK- and GSK3-mediated multisite phosphorylation, and CLASP2 plus-end-tracking is switched off during mitosis. Conclusion: Arginine-glutamate salt bridges contribute considerably to the binding energy between CLASP2 and EB1. Significance: Multisite phosphorylation may be a general mechanism by which interactions of intrinsically disordered proteins are controlled. A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic “molecular Velcro.” Molecular dynamics simulations and 31P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis.
Journal of Molecular Biology | 2008
Olena Pylypenko; André Schönichen; Diana Ludwig; Christian Ungermann; Roger S. Goody; Alexey Rak; Matthias Geyer
The evolutionarily conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are involved in the fusion of vesicles with their target membranes. While most SNAREs are permanently anchored to membranes by their transmembrane domains, the vesicle-associated SNARE Ykt6 has been found both in soluble and in membrane-bound pools. The R-SNARE Ykt6 is thought to mediate interactions between various Q-SNAREs by a reversible membrane-targeting cycle. Membrane attachment of Ykt6 is achieved by its C-terminal prenylation and palmitoylation motif succeeding the SNARE motif. In this study, we have analyzed full-length farnesylated Ykt6 from yeast and humans by biochemical and structural means. In vitro farnesylation of the C-terminal CAAX box of recombinant full-length Ykt6 resulted in stabilization of the native protein and a more compactly folded structure, as shown by size exclusion chromatography and limited proteolysis. Circular dichroism spectroscopy indicated a specific increase in the helical content of the farnesylated Ykt6 compared to the nonlipidated form or the single-longin domain, which correlated with a marked increase in stability as observed by heat denaturation experiments. Although highly soluble, farnesylated Ykt6 is capable of lipid membrane binding independent of the membrane charge, as shown by surface plasmon resonance. The crystal structure of the N-terminal longin domain of yeast Ykt6 (1-140) was determined at 2.5 A resolution. As similarly found in a previous NMR structure, the Ykt6 longin domain contains a hydrophobic patch at its surface that may accommodate the lipid moiety. In the crystal structure, this hydrophobic surface is buried in a crystallographic homomeric dimer interface. Together, these observations support a previously suggested closed conformation of cytosolic Ykt6, where the C-terminal farnesyl moiety folds onto a hydrophobic groove in the N-terminal longin domain.
Journal of Biological Chemistry | 2011
Sonja A. Dames; Alexander Junemann; Hans Jürgen Sass; André Schönichen; Barbara E. Stopschinski; Stephan Grzesiek; Jan Faix; Matthias Geyer
Dictyostelium Formin C (ForC) is involved in the regulation of local actin cytoskeleton reorganization (e.g. during cellular adhesion or migration). ForC contains formin homology 2 and 3 (FH2 and -3) domains and an N-terminal putative GTPase-binding domain (GBD) but lacks a canonical FH1 region. To better understand the role of the GBD, its structure, dynamics, lipid-binding properties, and cellular functions were analyzed by NMR and CD spectroscopy and by in vivo fluorescence microscopy. Moreover, the program CS-Rosetta was tested for the structure prediction based on chemical shift data only. The ForC GBD adopts an ubiquitin-like α/β-roll fold with an unusually long loop between β-strands 1 and 2. Based on the lipid-binding data, the presence of DPC micelles induces the formation of α-helical secondary structure and a rearrangement of the tertiary structure. Lipid-binding studies with a mutant protein and a peptide suggest that the β1-β2 loop is not relevant for these conformational changes. Whereas small amounts of negatively charged phosphoinositides (1,2-dioctanoyl-sn-glycero-3-(phosphoinositol 4,5-bisphosphate) and 1,2-dihexanoyl-sn-glycero-3-(phosphoinositol 3,4,5-trisphosphate)) lower the micelle concentration necessary to induce the observed spectral changes, other negatively charged phospholipids (1,2-dihexanoyl-sn-glycero-3-(phospho-l-serine) and 1,2-dihexanoyl-sn-glycero-3-phospho-(1′-rac-glycerol)) had no such effect. Interestingly, bicelles and micelles composed of diacylphosphocholines had no effect on the GBD structure. Our data suggest a model in which part of the large positively charged surface area of the GBD mediates localization to specific membrane patches, thereby regulating interactions with signaling proteins. Our cellular localization studies show that both the GBD and the FH3 domain are required for ForC targeting to cell-cell contacts and early phagocytic cups and macropinosomes.