Antonina Joanna Mazur
Ruhr University Bochum
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Antonina Joanna Mazur.
Journal of Cell Science | 2013
André Schönichen; Hans Georg Mannherz; Elmar Behrmann; Antonina Joanna Mazur; Sonja Kühn; Unai Silván; Cora-Ann Schoenenberger; Oliver T. Fackler; Stefan Raunser; Leif Dehmelt; Matthias Geyer
Summary Formins are actin polymerization factors that are known to nucleate and elongate actin filaments at the barbed end. In the present study we show that human FHOD1 lacks actin nucleation and elongation capacity, but acts as an actin bundling factor with capping activity toward the filament barbed end. Constitutively active FHOD1 associates with actin filaments in filopodia and lamellipodia at the leading edge, where it moves with the actin retrograde flow. At the base of lamellipodia, FHOD1 is enriched in nascent, bundled actin arcs as well as in more mature stress fibers. This function requires actin-binding domains located N-terminally to the canonical FH1–FH2 element. The bundling phenotype is maintained in the presence of tropomyosin, confirmed by electron microscopy showing assembly of 5 to 10 actin filaments into parallel, closely spaced filament bundles. Taken together, our data suggest a model in which FHOD1 stabilizes actin filaments by protecting barbed ends from depolymerization with its dimeric FH2 domain, whereas the region N-terminal to the FH1 domain mediates F-actin bundling by simultaneously binding to the sides of adjacent F-actin filaments.
European Journal of Histochemistry | 2010
Dorota Nowak; Antonina Joanna Mazur; A. Popow-Woźniak; A. Radwańska; Hans Georg Mannherz; M. Malicka-Błaszkiewicz
The dynamic reorganization of the actin cytoskeleton is regulated by a number of actin binding proteins (ABPs). Four human colon adenocarcinoma cell lines – parental and three selected sublines, which differ in motility and metastatic potential, were used to investigate the expression level and subcellular localization of selected ABPs. Our interest was focused on cofilin and ezrin. These proteins are essential for cell migration and adhesion. The data received for the three more motile adenocarcinoma sublines (EB3, 3LNLN, 5W) were compared with those obtained for the parental LS180 adenocarcinoma cells and fibroblastic NRK cells. Quantitative densitometric analysis and confocal fluorescence microscopy were used to examine the expression levels and subcellular distribution of the selected ABPs. Our data show distinct increase in the level of cofilin in adenocarcinoma cells accompanied by the reduction of inactive phosphorylated form of cofilin. In more motile cells, cofilin was accumulated at cellular periphery in co-localization with actin filaments. Furthemore, we indicated translocation of ezrin towards the cell periphery within more motile cells in comparison with NRK and parental adenocarcinoma cells. In summary, our data indicate the correlation between migration ability of selected human colon adenocarcinoma sublines and subcellular distribution as well as the level of cofilin and ezrin. Therefore these proteins might be essential for the higher migratory activity of invasive tumor cells.
Histochemistry and Cell Biology | 2012
Agnieszka Popow-Woźniak; Antonina Joanna Mazur; Hans Georg Mannherz; Maria Malicka-Błaszkiewicz; Dorota Nowak
The dynamic reorganization of actin cytoskeleton is regulated by a large number of actin-binding proteins. Among them, the interaction of ADF/cofilin with monomeric and filamentous actin is very important, since it severs actin filaments. It also positively influences actin treadmilling. The activity of ADF/cofilin is reversibly regulated by phosphorylation and dephosphorylation at Ser-3, with the phosphorylated form (P-cofilin) being inactive. Here, we studied the effects of overexpression of cofilin and two cofilin variants in the human colon adenocarcinoma LS180 cell line. We have generated the LS180 cells expressing three different cofilin variants: WT (wild type), Ser 3 Ala (S3A) (constitutively active) or Ser 3 Asp (S3D) (constitutively inactive cofilin). The cells expressing WT cofilin were characterized by abundant cell spreading and colocalization of cofilin with the submembranous F-actin. Similar effects were observed in cells expressing S3A cofilin. In contrast, LS180 cells expressing S3D cofilin remained longitudinal in morphology and cofilin was equally distributed within the cell body. Furthermore, the migration ability of LS180 cells expressing different cofilin mutants was analyzed. In comparison to control cells, we have noticed a significant, approximately fourfold increase in the migration factor value of cells overexpressing WT type cofilin. The overexpression of S3D cofilin resulted in an almost complete inhibition of cell motility. The estimation of actin pool in the cytosol of LS180 cells expressing S3A cofilin has shown a significantly lower level of total actin in reference to control cells. The opposite effect was observed in LS180 cells overexpressing S3D cofilin. In summary, the results of our experiments indicate that phosphorylation “status” of cofilin is a factor affecting the actin cytoskeleton organization and migration abilities of colon adenocarcinoma LS180 cells.
European Journal of Pharmacology | 2009
Antonina Joanna Mazur; Dorota Nowak; Hans Georg Mannherz; Maria Malicka-Błaszkiewicz
Methotrexate is a widely used drug in treatments of various types of malignancies and in the therapy of rheumatoid arthritis. The goal of our study was to look at the effect of this dihydrofolate reductase inhibitor on the actin cytoskeleton, since actin plays an important role in cancer transformation and metastasis. For this reason we compared results obtained from experiments on CaSki (human uterine cervix cancer) and NRK (normal fibroblastic rat kidney) cells treated with methotrexate. It has been shown previously that methotrexate can induce apoptosis. Therefore we first examined whether methotrexate induces apoptosis in our model cells. For this aim we applied several assays like Caspase Glo 3/7, DNA fragmentation and binding of phosphatidylserine by annexin V-fluorescein. The data obtained indicated that methotrexate induces programmed cell death in CaSki and NRK cells. However, differences between CaSki and NRK cells were observed in the morphological alterations and dynamics of apoptosis induced by methotrexate. It seemed that cancer cells were more sensitive towards the cell death inducing activity at lower concentrations of methotrexate. Analysis by confocal microscopy of methotrexate-treated cells demonstrated that treatment with this folate antagonist affected the actin cytoskeleton, although the dis-organization of the actin cytoskeleton after treatment with methotrexate differed between cancer and normal cells.
Life Sciences | 2012
Monika Litwin; Dorota Nowak; Antonina Joanna Mazur; Dagmara Baczynska; Hans Georg Mannherz; Maria Malicka-Błaszkiewicz
AIMS Formation of different protrusive structures by migrating cells is driven by actin polymerization at the plasma membrane region. Gelsolin is an actin binding protein controlling the length of actin filaments by its severing and capping activity. The main goal of this study was to determine the effect of gelsolin expression on the migration of human colon adenocarcinoma LS180 and melanoma A375 cells. MAIN METHODS Colon adenocarcinoma cell line LS180 was stably transfected with plasmid containing human cytoplasmic gelsolin cDNA tagged to enhanced green fluorescence protein (EGFP). Melanoma A375 cells were transfected with siRNAs directed against gelsolin. Real-time PCR and Western blotting were used to determine the level of gelsolin. The ability of actin to inhibit DNase I activity was used to quantify monomeric and total actin level and calculate the state of actin polymerization. Fluorescence confocal microscopy was applied to observe gelsolin and vinculin distribution along with actin cytoskeleton organization. KEY FINDINGS Increased level of gelsolin expression leads to its accumulation at the submembranous region of the cell accompanied by distinct changes in the state of actin polymerization and an increase in the migration of LS180 cells. In addition, LS180 cells overexpressing gelsolin form podosome-like structures as indicated by vinculin redistribution and its colocalization with gelsolin and actin. Downregulation of gelsolin expression in melanoma A375 cells significantly reduces their migratory potential. SIGNIFICANCE Our experimental data indicate that alterations in the expression level of gelsolin and its subcellular distribution may be directly responsible for determining migration capacity of human cancer cells.
Journal of Molecular Biology | 2010
Gia Machaidze; Andrea Sokoll; Atsushi Shimada; Ariel Lustig; Antonina Joanna Mazur; Alfred Wittinghofer; Ueli Aebi; Hans Georg Mannherz
Mouse Diaphanous-related formins (mDias) are members of the formin protein family that nucleate actin polymerization and subsequently promote filamentous actin (F-actin) elongation by monomer addition to fast-growing barbed ends. It has been suggested that mDias preferentially recruit actin complexed to profilin due to their proline-rich FH1 domains. During filament elongation, dimeric mDias remain attached to the barbed ends by their FH2 domains, which form an anti-parallel ring-like structure enclosing the filament barbed ends. Dimer formation of mDia-FH2 domains is dependent on their N-terminal lasso and linker subdomains (connector). Here, we investigated the effect of isolated FH2 domains on actin polymerization using mDia1-FH2 domain plus connector, as well as core mDia1, mDia2, and mDia3 missing the connector, by cosedimentation and electron microscopy after negative staining. Analytical ultracentrifugation showed that core FH2 domains of mDia1 and mDia2 exhibited a low degree of dimer formation, whereas mDia3-FH2 minus connector and mDia1-FH2 plus connector readily dimerized. Only core mDia3-FH2 was able to nucleate actin polymerization. However, all tested core FH2 domains decorated and bundled F-actin, as demonstrated by electron microscopy after negative staining. Bundling activity was highest for mDia3-FH2, decreased for mDia2-FH2, and further decreased for mDia1-FH2. The mDia1-FH2 domain plus connector induced actin polymerization also in the absence of profilin, but failed to induce F-actin deformation and bundling. We also tested whether mDia1-FH2 was able to repolymerize actin in complex with different proteins that stabilize globular actin. The data obtained demonstrated that mDia1-FH2 induced actin repolymerization only from the actin/cofilin-1 complex, but not when complexed to actin depolymerizing factor, gelsolin segment 1, vitamin D binding protein, or deoxyribonuclease I.
European Journal of Cell Biology | 2010
Antonina Joanna Mazur; Dagmar Gremm; Temuujin Dansranjavin; Monika Litwin; Brigitte M. Jockusch; Albrecht Wegner; Alan G. Weeds; Hans Georg Mannherz
Lamellipodial extension depends essentially on the polymerisation cycle of actin. In this cellular compartment the rate and extent of actin polymerisation is tightly regulated by a large number of actin-binding proteins. The main regulators comprise proteins of the actin-depolymerising factor (ADF)/cofilin family, which stimulate actin cycling, but there are also minor constituents like gelsolin and certain variants of tropomyosin that have so far not been considered to be lamellipodial constituents. A number of cell lines express ADF and cofilin simultaneously as shown here for the fibroblastic normal rat kidney (NRK) cell line. Both proteins co-localise in the lamellipodial region. We furthermore demonstrate the presence of gelsolin in lamellipodia by immunostaining with anti-gelsolin antibodies and transfection with EGFP-tagged gelsolin constructs. The presence of tropomyosins in lamellipodia has recently been reported (Hillberg et al., 2006. Tropomyosins are present in lamellipodia of motile cells. Eur. J. Cell Biol. 85, 399-409). In order to evaluate the effect of the simultaneous presence of ADF and cofilin together with tropomyosin and/or gelsolin on the polymerisation cycle of actin, we analysed their effect or combinations of these actin-binding proteins on the steady-state F-actin-ATPase activity in biochemical assays. Our results demonstrate stimulatory effects of ADF/cofilin on actin cycling and a further modulation of ADF/cofilin-stimulated F-actin-ATPase activity by gelsolin and tropomyosin in a complex manner.
Annals of the New York Academy of Sciences | 2010
Hans Georg Mannherz; Antonina Joanna Mazur; Brigitte M. Jockusch
The β‐thymosins are peptides of about 5 kDa molecular mass. Thymosin β4 (Tβ4) is the most ubiquitous member of this family and composed of 43 residues. Initially the β‐thymosins were supposed to be specifically produced and released by the thymic gland and to possess hormonal activities modulating the immune response. However, it was later noticed that β‐thymosins are present in the cytoplasm of almost all eukaryotic cells. Especially high concentrations of Tβ4 were detected in hematopoetic cells, like polymorpho‐nuclear leucocytes and in platelets. In these cells the main intracellular function of the β‐thymosins is to bind to monomeric actin and to inhibit its polymerization to filamentous actin. Thus Tβ4 allows resting eukaryotic cells to maintain a high concentration of monomeric actin, although the intracellular ionic conditions would favor its almost complete polymerization to F‐actin. Thereby monomeric actin is sequestered from the dynamic assembly and disassembly processes of the actin cytoskeleton that constantly occur intracellularly.
Cytoskeleton | 2014
Abdulatif Al Haj; Antonina Joanna Mazur; Sabine Buchmeier; Christine App; Carsten Theiss; Unai Silván; Cora-Ann Schoenenberger; Brigitte M. Jockusch; Ewald Hannappel; Alan G. Weeds; Hans Georg Mannherz
F‐actin treadmilling plays a key part in cell locomotion. Because immunofluorescence showed colocalisation of thymosin beta4 (Tβ4) with cofilin‐1 and Arp2/3 complex in lamellipodia, we analyzed combinations of these proteins on F‐actin‐adenosine triphosphate (ATP)‐hydrolysis, which provides a measure of actin treadmilling. Actin depolymerising factor (ADF)/cofilin stimulated treadmilling, while Tβ4 decreased treadmilling, presumably by sequestering monomers. Tβ4 added together with ADF/cofilin also inhibited the treadmilling, relative to cofilin alone, but both the rate and extent of depolymerization were markedly enhanced in the presence of both these proteins. Arp2/3 complex reversed the sequestering activity of Tβ4 when equimolar to actin, but not in the additional presence of cofilin‐1 or ADF. Transfection experiments to explore the effects of changing the intracellular concentration of Tβ4 in HeLa cells showed that an increase in Tβ4 resulted in reduced actin filaments bundles and narrower lamellipodia, and a conspicuous decrease of cell migration as seen by two different assays. In contrast, cells transfected with a vector leading to Tβ4 knockdown by small interfering RNA (siRNA) displayed prominent actin filament networks within the lamellipodia and the leading lamella and enhanced migration. The experiments reported here demonstrate the importance of the interplay of these different classes of actin‐binding proteins on cell behaviour.
European Journal of Cell Biology | 2015
Abdulatif Al Haj; Antonina Joanna Mazur; Katarzyna Radaszkiewicz; Tomasz Radaszkiewicz; Aleksandra Makowiecka; Barbara E. Stopschinski; André Schönichen; Matthias Geyer; Hans Georg Mannherz
The formin homology domain-containing protein1 (FHOD1) suppresses actin polymerization by inhibiting nucleation, but bundles actin filaments and caps filament barbed ends. Two polyclonal antibodies against FHOD1 were generated against (i) its N-terminal sequence (residues 1-339) and (ii) a peptide corresponding the sequence from position 358-371, which is unique for FHOD1 and does not occur in its close relative FHOD3. After affinity purification both antibodies specifically stain purified full length FHOD1 and a band of similar molecular mass in homogenates of cardiac muscle. The antibody against the N-terminus of FHOD1 was used for immunostaining cells of established lines, primary neonatal (NRC) and adult (ARC) rat cardiomyocytes and demonstrated the presence of FHOD1 in HeLa and fibroblastic cells along stress fibers and within presumed lamellipodia and actin arcs. In NRCs and ARCs we observed a prominent staining of presumed intercalated discs (ICD). Immunostaining of sections of hearts with both anti-FHOD1 antibodies confirmed the presence of FHOD1 in ICDs and double immunostaining demonstrated its colocalisation with cadherin, plakoglobin and a probably slightly shifted localization to connexin43. Similarly, immunostaining of isolated mouse or pig ICDs corroborated the presence of FHOD1 and its colocalisation with the mentioned cell junctional components. Anti-FHOD1 immunoblots of isolated ICDs demonstrated the presence of an immunoreactive band comigrating with purified FHOD1. Conversely, an anti-peptide antibody specific for FHOD3 with no cross-reactivity against FHOD1 immunostained on sections of cardiac muscle and ARCs the myofibrils in a cross-striated pattern but not the ICDs. In addition, the anti-peptide-FHOD1 antibody stained the lateral sarcolemma of ARCs in a banded pattern. Double immunostaining with anti-cadherin and -integrin-ß1 indicated the additional localization of FHOD1 in costameres. Immunostaining of cardiac muscle sections or ARCs with antibodies against mDia3-FH2-domain showed colocalisation with cadherin along the lateral border of cardiomyocytes suggesting also its presence in costameres.