Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Schuster is active.

Publication


Featured researches published by André Schuster.


Biotechnology for Biofuels | 2012

A versatile toolkit for high throughput functional genomics with Trichoderma reesei.

André Schuster; Kenneth S. Bruno; James R. Collett; Scott E. Baker; Bernhard Seiboth; Christian P. Kubicek; Monika Schmoll

BackgroundThe ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies.ResultsAiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out in T. reesei. We provide a primer database for gene deletion using the pyr4, amdS and hph selection markers. For high throughput generation of gene knock outs, we constructed vectors using yeast mediated recombination and then transformed a T. reesei strain deficient in non-homologous end joining (NHEJ) by spore electroporation. This NHEJ-defect was subsequently removed by crossing of mutants with a sexually competent strain derived from the parental strain, QM9414.ConclusionsUsing this strategy and the materials provided, high throughput gene deletion in T. reesei becomes feasible. Moreover, with the application of sexual development, the NHEJ-defect can be removed efficiently and without the need for additional selection markers. The same advantages apply for the construction of multiple mutants by crossing of strains with different gene deletions, which is now possible with considerably less hands-on time and minimal screening effort compared to a transformation approach. Consequently this toolkit can considerably boost research towards efficient exploitation of the resources of T. reesei for cellulase expression and hence second generation biofuel production.


Applied Microbiology and Biotechnology | 2010

Biology and biotechnology of Trichoderma

André Schuster; Monika Schmoll

Fungi of the genus Trichoderma are soilborne, green-spored ascomycetes that can be found all over the world. They have been studied with respect to various characteristics and applications and are known as successful colonizers of their habitats, efficiently fighting their competitors. Once established, they launch their potent degradative machinery for decomposition of the often heterogeneous substrate at hand. Therefore, distribution and phylogeny, defense mechanisms, beneficial as well as deleterious interaction with hosts, enzyme production and secretion, sexual development, and response to environmental conditions such as nutrients and light have been studied in great detail with many species of this genus, thus rendering Trichoderma one of the best studied fungi with the genome of three species currently available. Efficient biocontrol strains of the genus are being developed as promising biological fungicides, and their weaponry for this function also includes secondary metabolites with potential applications as novel antibiotics. The cellulases produced by Trichoderma reesei, the biotechnological workhorse of the genus, are important industrial products, especially with respect to production of second generation biofuels from cellulosic waste. Genetic engineering not only led to significant improvements in industrial processes but also to intriguing insights into the biology of these fungi and is now complemented by the availability of a sexual cycle in T. reesei/Hypocrea jecorina, which significantly facilitates both industrial and basic research. This review aims to give a broad overview on the qualities and versatility of the best studied Trichoderma species and to highlight intriguing findings as well as promising applications.


Biotechnology for Biofuels | 2009

Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina

Christian P. Kubicek; Marianna Mikus; André Schuster; Monika Schmoll; Bernhard Seiboth

Hypocrea jecorina (= Trichoderma reesei) is the main industrial source of cellulases and hemicellulases used to depolymerise plant biomass to simple sugars that are converted to chemical intermediates and biofuels, such as ethanol. Cellulases are formed adaptively, and several positive (XYR1, ACE2, HAP2/3/5) and negative (ACE1, CRE1) components involved in this regulation are now known. In addition, its complete genome sequence has been recently published, thus making the organism susceptible to targeted improvement by metabolic engineering. In this review, we summarise current knowledge about how cellulase biosynthesis is regulated, and outline recent approaches and suitable strategies for facilitating the targeted improvement of cellulase production by genetic engineering.


Journal of Biotechnology | 2009

Gene targeting in a nonhomologous end joining deficient Hypocrea jecorina

Zhang Guangtao; Lukas Hartl; André Schuster; Stefan Polak; Monika Schmoll; Tianhong Wang; Verena Seidl; Bernhard Seiboth

The industrially applied ascomycete Hypocrea jecorina (synonym: Trichoderma reesei) exhibits a low rate of exogenous DNA integration by homologous recombination (HR). This hinders the high-throughput generation of strains by gene replacement and is therefore impeding systematic functional gene analyses towards, e.g. strain improvement for protein or enzyme production. To increase the rate of HR events during fungal transformation we identified and deleted the orthologue of the human KU70 in H. jecorina, which is required for the nonhomologous end joining (NHEJ) pathway and responsible for ectopic DNA integration. The effect of the absence of the H. jecorina tku70 on gene targeting was tested by deletion of two so far uncharacterized genes encoding a short chain dehydrogenase and a fungal specific transcription factor. Efficiency of gene targeting for both genes was >95% in a Deltatku70 strain when 1kb homologous flanking regions were used in the deletion construct. This is a significant increase in targeting efficiency compared to the parental - non-tku70 deleted - strain TU-6 where a gene knock-out frequency of only 5-10% was observed. Together with the recently annotated genomic sequence of H. jecorina, this system provides a useful tool for a genome-wide functional gene analysis on a high-throughput scale to improve the biotechnological potential of this fungus.


Eukaryotic Cell | 2009

The G-Alpha Protein GNA3 of Hypocrea jecorina (Anamorph Trichoderma reesei) Regulates Cellulase Gene Expression in the Presence of Light†

Monika Schmoll; André Schuster; Roberto do Nascimento Silva; Christian P. Kubicek

ABSTRACT Although the enzymes enabling Hypocrea jecorina (anamorph Trichoderma reesei) to degrade the insoluble substrate cellulose have been investigated in some detail, little is still known about the mechanism by which cellulose signals its presence to the fungus. In order to investigate the possible role of a G-protein/cyclic AMP signaling pathway, the gene encoding GNA3, which belongs to the adenylate cyclase-activating class III of G-alpha subunits, was cloned. gna3 is clustered in tandem with the mitogen-activated protein kinase gene tmk3 and the glycogen phosphorylase gene gph1. The gna3 transcript is upregulated in the presence of light and is almost absent in the dark. A strain bearing a constitutively activated version of GNA3 (gna3QL) exhibits strongly increased cellulase transcription in the presence of the inducer cellulose and in the presence of light, whereas a gna3 antisense strain showed delayed cellulase transcription under this condition. However, the gna3QL mutant strain was unable to form cellulases in the absence of cellulose. The necessity of light for stimulation of cellulase transcription by GNA3 could not be overcome in a mutant which expressed gna3 under control of the constitutive gpd1 promoter also in darkness. We conclude that the previously reported stimulation of cellulase gene transcription by light, but not the direct transmission of the cellulose signal, involves the function and activation of GNA3. The upregulation of gna3 by light is influenced by the light modulator ENVOY, but GNA3 itself has no effect on transcription of the light regulator genes blr1, blr2, and env1. Our data for the first time imply an involvement of a G-alpha subunit in a light-dependent signaling event in fungi.


BMC Genomics | 2007

Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process

André Schuster; Christian P. Kubicek; Martina A. Friedl; Irina S. Druzhinina; Monika Schmoll

BackgroundIn fungi, light is primarily known to influence general morphogenesis and both sexual and asexual sporulation. In order to expand the knowledge on the effect of light in fungi and to determine the role of the light regulatory protein ENVOY in the implementation of this effect, we performed a global screen for genes, which are specifically effected by light in the fungus Hypocrea jecorina (anamorph Trichoderma reesei) using Rapid Subtraction Hybridization (RaSH). Based on these data, we analyzed whether these genes are influenced by ENVOY and if overexpression of ENVOY in darkness would be sufficient to execute its function.ResultsThe cellular functions of the detected light responsive genes comprised a variety of roles in transcription, translation, signal transduction, metabolism, and transport. Their response to light with respect to the involvement of ENVOY could be classified as follows: (i) ENVOY-mediated upregulation by light; (ii) ENVOY-independent upregulation by light; (iii) ENVOY-antagonized upregulation by light; ENVOY-dependent repression by light; (iv) ENVOY-independent repression by light; and (v) both positive and negative regulation by ENVOY of genes not responsive to light in the wild-type. ENVOY was found to be crucial for normal growth in light on various carbon sources and is not able to execute its regulatory function if overexpressed in the darkness.ConclusionThe different responses indicate that light impacts fungi like H. jecorina at several cellular processes, and that it has both positive and negative effects. The data also emphasize that ENVOY has an apparently more widespread cellular role in this process than only in modulating the response to light.


BMC Biology | 2009

Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei)

Christian Seibel; Gabriela Gremel; Roberto do Nascimento Silva; André Schuster; Christian P. Kubicek; Monika Schmoll

BackgroundThe filamentous ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is primarily known for its efficient enzymatic machinery that it utilizes to decompose cellulosic substrates. Nevertheless, the nature and transmission of the signals initiating and modulating this machinery are largely unknown. Heterotrimeric G-protein signaling represents one of the best studied signal transduction pathways in fungi.ResultsAnalysis of the regulatory targets of the G-protein α subunit GNA1 in H. jecorina revealed a carbon source and light-dependent role in signal transduction. Deletion of gna1 led to significantly decreased biomass formation in darkness in submersed culture but had only minor effects on morphology and hyphal apical extension rates on solid medium. Cellulase gene transcription was abolished in Δgna1 on cellulose in light and enhanced in darkness. However, analysis of strains expressing a constitutively activated GNA1 revealed that GNA1 does not transmit the essential inducing signal. Instead, it relates a modulating signal with light-dependent significance, since induction still required the presence of an inducer. We show that regulation of transcription and activity of GNA1 involves a carbon source-dependent feedback cycle. Additionally we found a function of GNA1 in hydrophobin regulation as well as effects on conidiation and tolerance of osmotic and oxidative stress.ConclusionWe conclude that GNA1 transmits a signal the physiological relevance of which is dependent on both the carbon source as well as the light status. The widespread consequences of mutations in GNA1 indicate a broad function of this Gα subunit in appropriation of intracellular resources to environmental (especially nutritional) conditions.


Applied and Environmental Microbiology | 2012

Roles of Protein Kinase A and Adenylate Cyclase in Light-Modulated Cellulase Regulation in Trichoderma reesei

André Schuster; Doris Tisch; Christian P. Kubicek; Monika Schmoll

ABSTRACT The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process.


BMC Research Notes | 2010

Relevance of the light signaling machinery for cellulase expression in trichoderma reesei (hypocrea jecorina)

Miklós Gyalai-Korpos; Gáspár Nagy; Zoltán Mareczky; André Schuster; Kati Réczey; Monika Schmoll

BackgroundIn nature, light is one of the most important environmental cues that fungi perceive and interpret. It is known not only to influence growth and conidiation, but also cellulase gene expression. We therefore studied the relevance of the main components of the light perception machinery of Trichoderma reesei (Hypocrea jecorina), ENV1, BLR1 and BLR2, for production of plant cell wall degrading enzymes in fermentations aimed at efficient biosynthesis of enzyme mixtures for biofuel production.FindingsOur results indicate that despite cultivation in mostly dark conditions, all three components show an influence on cellulase expression. While we found the performance of the enzyme mixture secreted by a deletion mutant in env1 to be enhanced, the higher cellulolytic activity observed for Δblr2 is mainly due to an increased secretion capacity of this strain. Δblr1 showed enhanced biomass accumulation, but due to its obviously lower secretion capacity still was the least efficient strain in this study.ConclusionsWe conclude that with respect to regulation of plant cell wall degrading enzymes, the blue light regulator proteins are unlikely to act as a complex. Their regulatory influence on cellulase biosynthesis involves an alteration of protein secretion, which may be due to adjustment of transcription or posttranscriptional regulation of upstream factors. In contrast, the regulatory function of ENV1 seems to involve adjustment of enzyme proportions to environmental conditions.


BMC Genomics | 2014

Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei

Doris Tisch; André Schuster; Monika Schmoll

BackgroundCrosstalk between the signalling pathways responding to light–dark cycles and those triggering the adaptation of metabolism to the environment is known to occur in various organisms. This interrelationship of light response and nutrient sigalling is crucial for health and fitness. The tropical ascomycete Trichoderma reesei (syn. Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light. Therefore we aimed to elucidate the interrelationship between nutrient and light signaling and how the light signal is transmitted to downstream pathways.ResultsWe found that the targets of the light regulatory protein ENV1 in light show considerable overlap with those of the heterotrimeric G-protein components PhLP1, GNB1 and GNG1. Detailed investigation of a regulatory interrelationship of these components with ENV1 under conditions of early and late light response indicated a transcriptional mutual regulation between PhLP1 and ENV1, which appears to dampen nutrient signalling during early light response, presumably to free resources for protective measures prior to adaptation of metabolism to light. Investigating the downstream part of the cascade we found support for the hypothesis that ENV1 is necessary for cAMP mediated regulation of a considerable part of the core functions of the output pathway of this cascade, including regulation of glycoside hydrolase genes and those involved in nitrogen, sulphur and amino acid metabolism.ConclusionsENV1 and PhLP1 are mutual regulators connecting light signaling with nutrient signaling, with ENV1 triggering the output pathway by influencing cAMP levels.

Collaboration


Dive into the André Schuster's collaboration.

Top Co-Authors

Avatar

Monika Schmoll

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian P. Kubicek

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Doris Tisch

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bernhard Seiboth

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Alonso Monroy

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christoph Dattenböck

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Eva Stappler

Austrian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James R. Collett

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Scott E. Baker

Pacific Northwest National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge