Doris Tisch
Vienna University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Doris Tisch.
Genome Biology | 2011
Christian P. Kubicek; Alfredo Herrera-Estrella; Diego Martinez; Irina S. Druzhinina; Michael R. Thon; Susanne Zeilinger; Sergio Casas-Flores; Benjamin A. Horwitz; Prasun K. Mukherjee; Mala Mukherjee; László Kredics; Luis David Alcaraz; Andrea Aerts; Zsuzsanna Antal; Lea Atanasova; Mayte Guadalupe Cervantes-Badillo; Jean F. Challacombe; Olga Chertkov; Kevin McCluskey; Fanny Coulpier; Nandan Deshpande; Hans von Döhren; Daniel J. Ebbole; Edgardo U. Esquivel-Naranjo; Erzsébet Fekete; Michel Flipphi; Fabian Glaser; Elida Yazmín Gómez-Rodríguez; Sabine Gruber; Cliff Han
BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.
Applied Microbiology and Biotechnology | 2010
Doris Tisch; Monika Schmoll
Light represents a major carrier of information in nature. The molecular machineries translating its electromagnetic energy (photons) into the chemical language of cells transmit vital signals for adjustment of virtually every living organism to its habitat. Fungi react to illumination in various ways, and we found that they initiate considerable adaptations in their metabolic pathways upon growth in light or after perception of a light pulse. Alterations in response to light have predominantly been observed in carotenoid metabolism, polysaccharide and carbohydrate metabolism, fatty acid metabolism, nucleotide and nucleoside metabolism, and in regulation of production of secondary metabolites. Transcription of genes is initiated within minutes, abundance and activity of metabolic enzymes are adjusted, and subsequently, levels of metabolites are altered to cope with the harmful effects of light or to prepare for reproduction, which is dependent on light in many cases. This review aims to give an overview on metabolic pathways impacted by light and to illustrate the physiological significance of light for fungi. We provide a basis for assessment whether a given metabolic pathway might be subject to regulation by light and how these properties can be exploited for improvement of biotechnological processes.
Fungal Genetics and Biology | 2010
Francisco Castellanos; Monika Schmoll; Pedro Martínez; Doris Tisch; Christian P. Kubicek; Alfredo Herrera-Estrella; Edgardo U. Esquivel-Naranjo
In Trichoderma reesei light stimulates transcription of cellulase genes and this regulation has been found to occur, at least in part, through the protein ENVOY. Here we analyzed the role of the BLR photoreceptor complex (BLR1/BLR2) in photoconidiation and the regulation of gene expression. Both responses were dependent on both BLR proteins. Analyses of Deltablr1, Deltablr2 and Deltaenv1 mutants showed that the BLR proteins regulate growth under illumination. Analysis of env1 mutant strains indicated that ENVOY allows the fungus to tolerate continuous exposure to light, damped the capacity of Trichoderma to perceive changes in light intensity, and suggested that it participates in a negative regulatory feedback. Its activity as repressor establishes a period of insensitivity to a second light treatment. Interestingly, the stimulation of cellulase gene expression by light was also modulated by both blr1 and blr2, indicating a key role of the BLR proteins in this pathway.
Fungal Genetics and Biology | 2011
Doris Tisch; Christian P. Kubicek; Monika Schmoll
Sensing of environmental signals is often mediated by G-protein coupled receptors and their cognate heterotrimeric G-proteins. In Trichoderma reesei (Hypocrea jecorina) the signals transmitted via the G-protein alpha subunits GNA1 and GNA3 cause considerable modulation of cellulase transcript levels and the extent of this adjustment is dependent on the light status. We therefore intended to elucidate the underlying mechanism connecting light response and heterotrimeric G-protein signaling. Analysis of double mutant strains showed that constitutive activation of GNA1 or GNA3 in the absence of the PAS/LOV domain protein ENVOY (ENV1) leads to the phenotype of constitutive G-alpha activation in darkness. In light, however the deletion-phenotype of Δenv1 was observed with respect to growth, conidiation and cellulase gene transcription. Additionally deletion of env1 causes decreased intracellular cAMP accumulation, even upon constitutive activation of GNA1 or GNA3. While supplementation of cAMP caused an even more severe growth phenotype of all strains lacking env1 in light, addition of the phosphodiesterase inhibitor caffeine rescued the growth phenotype of these strains. ENV1 is consequently suggested to connect the light response pathway with nutrient signaling by the heterotrimeric G-protein cascade by adjusting transcript levels of gna1 and gna3 and action on cAMP levels – presumably through inhibition of a phosphodiesterase.
Applied and Environmental Microbiology | 2012
André Schuster; Doris Tisch; Christian P. Kubicek; Monika Schmoll
ABSTRACT The cyclic AMP (cAMP) pathway represents a central signaling cascade with crucial functions in all organisms. Previous studies of Trichoderma reesei (anamorph of Hypocrea jecorina) suggested a function of cAMP signaling in regulation of cellulase gene expression. We were therefore interested in how the crucial components of this pathway, adenylate cyclase (ACY1) and cAMP-dependent protein kinase A (PKA), would affect cellulase gene expression. We found that both ACY1 and PKA catalytic subunit 1 (PKAC1) are involved in regulation of vegetative growth but are not essential for sexual development. Interestingly, our results showed considerably increased transcript abundance of cellulase genes in darkness compared to light (light responsiveness) upon growth on lactose. This effect is strongly enhanced in mutant strains lacking PKAC1 or ACY1. Comparison to the wild type showed that ACY1 has a consistently positive effect on cellulase gene expression in light and darkness, while PKAC1 influences transcript levels of cellulase genes positively in light but negatively in darkness. A function of PKAC1 in light-modulated cellulase gene regulation is also reflected by altered complex formation within the cel6a/cbh2 promoter in light and darkness and in the absence of pkac1. Analysis of transcript levels of cellulase regulator genes indicates that the regulatory output of the cAMP pathway may be established via adjustment of XYR1 abundance. Consequently, both adenylate cyclase and protein kinase A are involved in light-modulated cellulase gene expression in T. reesei and have a dampening effect on the light responsiveness of this process.
BMC Genomics | 2011
Doris Tisch; Christian P. Kubicek; Monika Schmoll
BackgroundIn the biotechnological workhorse Trichoderma reesei (Hypocrea jecorina) transcription of cellulase genes as well as efficiency of the secreted cellulase mixture are modulated by light. Components of the heterotrimeric G-protein pathway interact with light-dependent signals, rendering this pathway a key regulator of cellulase gene expression.ResultsAs regulators of heterotrimeric G-protein signaling, class I phosducin-like proteins, are assumed to act as co-chaperones for G-protein beta-gamma folding and exert their function in response to light in higher eukaryotes. Our results revealed light responsive transcription of the T. reesei class I phosducin-like protein gene phlp1 and indicate a light dependent function of PhLP1 also in fungi. We showed the functions of PhLP1, GNB1 and GNG1 in the same pathway, with one major output being the regulation of transcription of glycoside hydrolase genes including cellulase genes in T. reesei. We found no direct correlation between the growth rate and global regulation of glycoside hydrolases, which suggests that regulation of growth does not occur only at the level of substrate degradation efficiency.Additionally, PhLP1, GNB1 and GNG1 are all important for proper regulation of light responsiveness during long term exposure. In their absence, the amount of light regulated genes increased from 2.7% in wild type to 14% in Δphlp1. Besides from the regulation of degradative enzymes, PhLP1 was also found to impact on the transcription of genes involved in sexual development, which was in accordance with decreased efficiency of fruiting body formation in Δphlp1. The lack of GNB1 drastically diminished ascospore discharge in T. reesei.ConclusionsThe heterotrimeric G-protein pathway is crucial for the interconnection of nutrient signaling and light response of T. reesei, with the class I phosducin-like protein PhLP1, GNB1 and GNG1 acting as important nodes, which influence light responsiveness, glycoside hydrolase gene transcription and sexual development.
Microbiology and Molecular Biology Reviews | 2016
Monika Schmoll; Christoph Dattenböck; Nohemí Carreras-Villaseñor; Artemio Mendoza-Mendoza; Doris Tisch; Mario Ivan Alemán; Scott E. Baker; Chris M. Brown; Mayte Guadalupe Cervantes-Badillo; José E. Cetz-Chel; Gema Rosa Cristóbal-Mondragón; Luis Delaye; Edgardo U. Esquivel-Naranjo; Alexa Frischmann; Jose de Jesus Gallardo-Negrete; Mónica García-Esquivel; Elida Yazmín Gómez-Rodríguez; David R. Greenwood; Miguel Hernández-Oñate; Joanna S. Kruszewska; Robert Lawry; Héctor M. Mora-Montes; Tania Muñoz‐Centeno; Maria Fernanda Nieto-Jacobo; Guillermo Nogueira Lopez; Vianey Olmedo-Monfil; Macario Osorio-Concepción; Sebastian Piłsyk; Kyle R. Pomraning; Aroa Rodriguez-Iglesias
SUMMARY The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for “hot topic” research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
BMC Genomics | 2012
Monika Schmoll; Chaoguang Tian; Jianping Sun; Doris Tisch; N. Louise Glass
BackgroundLight represents an important environmental cue, which exerts considerable influence on the metabolism of fungi. Studies with the biotechnological fungal workhorse Trichoderma reesei (Hypocrea jecorina) have revealed an interconnection between transcriptional regulation of cellulolytic enzymes and the light response. Neurospora crassa has been used as a model organism to study light and circadian rhythm biology. We therefore investigated whether light also regulates transcriptional regulation of cellulolytic enzymes in N. crassa.ResultsWe show that the N. crassa photoreceptor genes wc-1, wc-2 and vvd are involved in regulation of cellulase gene expression, indicating that this phenomenon is conserved among filamentous fungi. The negative effect of VVD on production of cellulolytic enzymes is thereby accomplished by its role in photoadaptation and hence its function in White collar complex (WCC) formation. In contrast, the induction of vvd expression by the WCC does not seem to be crucial in this process. Additionally, we found that WC-1 and WC-2 not only act as a complex, but also have individual functions upon growth on cellulose.ConclusionsGenome wide transcriptome analysis of photoreceptor mutants and evaluation of results by analysis of mutant strains identified several candidate genes likely to play a role in light modulated cellulase gene expression. Genes with functions in amino acid metabolism, glycogen metabolism, energy supply and protein folding are enriched among genes with decreased expression levels in the wc-1 and wc-2 mutants. The ability to properly respond to amino acid starvation, i. e. up-regulation of the cross pathway control protein cpc-1, was found to be beneficial for cellulase gene expression. Our results further suggest a contribution of oxidative depolymerization of cellulose to plant cell wall degradation in N. crassa.
Eukaryotic Cell | 2012
Christian Seibel; Doris Tisch; Christian P. Kubicek; Monika Schmoll
ABSTRACT Light is one crucial environmental signal which can determine whether a fungus reproduces asexually or initiates sexual development. Mating in the ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) occurs preferentially in light. We therefore investigated the relevance of the light response machinery for sexual development in H. jecorina. We found that the photoreceptors BLR1 and BLR2 and the light-regulatory protein ENV1 have no effect on male fertility, while ENV1 is essential for female fertility. BLR1 and BLR2 were found to impact fruiting body formation although they are not essential for mating. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that BLR1, BLR2, and ENV1 negatively regulate transcript levels of both pheromone receptors as well as peptide pheromone precursors in light but not in darkness and in a mating type-dependent manner. The effect of BLR1 and BLR2 on regulation of pheromone precursor and receptor genes is less severe than that of ENV1 as strains lacking env1 show 100-fold (for ppg1) to more than 100,000-fold (for hpp1) increased transcript levels of pheromone precursor genes as well as more than 20-fold increased levels of hpr1, the pheromone receptor receiving the HPP1 signal in a MAT1-1 strain. ENV1 likely integrates additional signals besides light, and our results indicate that its function is partially mediated via regulation of mat1-2-1. We conclude that ENV1 is essential for balancing the levels of genes regulated in a mating-type-dependent manner, which contributes to determination of sexual identity and fruiting body formation.
BMC Genomics | 2013
Doris Tisch; Monika Schmoll
BackgroundThe tropical ascomycete Trichoderma reesei (Hypocrea jecorina) represents one of the most efficient plant cell wall degraders. Regulation of the enzymes required for this process is affected by nutritional signals as well as other environmental signals including light.ResultsOur transcriptome analysis of strains lacking the photoreceptors BLR1 and BLR2 as well as ENV1 revealed a considerable increase in the number of genes showing significantly different transcript levels in light and darkness compared to wild-type. We show that members of all glycoside hydrolase families can be subject to light dependent regulation, hence confirming nutrient utilization including plant cell wall degradation as a major output pathway of light signalling. In contrast to N. crassa, photoreceptor mediated regulation of carbon metabolism in T. reesei occurs primarily by BLR1 and BLR2 via their positive effect on induction of env1 transcription, rather than by a presumed negative effect of ENV1 on the function of the BLR complex. Nevertheless, genes consistently regulated by photoreceptors in N. crassa and T. reesei are significantly enriched in carbon metabolic functions. Hence, different regulatory mechanisms are operative in these two fungi, while the light dependent regulation of plant cell wall degradation appears to be conserved.Analysis of growth on different carbon sources revealed that the oxidoreductive D-galactose and pentose catabolism is influenced by light and ENV1. Transcriptional regulation of the target enzymes in these pathways is enhanced by light and influenced by ENV1, BLR1 and/or BLR2. Additionally we detected an ENV1-regulated genomic cluster of 9 genes including the D-mannitol dehydrogenase gene lxr1, with two genes of this cluster showing consistent regulation in N. crassa.ConclusionsWe show that one major output pathway of light signalling in Trichoderma reesei is regulation of glycoside hydrolase genes and the degradation of hemicellulose building blocks. Targets of ENV1 and BLR1/BLR2 are for the most part distinct and indicate individual functions for ENV1 and the BLR complex besides their postulated regulatory interrelationship.
Collaboration
Dive into the Doris Tisch's collaboration.
Mayte Guadalupe Cervantes-Badillo
Instituto Potosino de Investigación Científica y Tecnológica
View shared research outputs