Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where André Tiago Rossito Goes is active.

Publication


Featured researches published by André Tiago Rossito Goes.


Neuroscience | 2014

Neuroprotective effects of swimming training in a mouse model of Parkinson's disease induced by 6-hydroxydopamine.

André Tiago Rossito Goes; Leandro Cattelan Souza; Carlos Borges Filho; L. Del Fabbro; M.G. de Gomes; Silvana Peterini Boeira; Cristiano R. Jesse

Parkinsons disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.


Neuroscience | 2015

Chronic unpredictable mild stress decreases BDNF and NGF levels and Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin.

Carlos Borges Filho; Cristiano R. Jesse; Franciele Donato; Renata Giacomeli; L. Del Fabbro; M. da Silva Antunes; M.G. de Gomes; André Tiago Rossito Goes; Silvana Peterini Boeira; Marina Prigol; Leandro Cattelan Souza

Our working hypothesis is that brain neurotrophins and brain Na(+),K(+)-ATPase may be strongly associated with the occurrence of depression in animals subjected to chronic unpredictable mild stress (CUMS). Still, we believe that chrysin, a natural and bioactive flavonoid found in honey and some plants, can provide satisfactory effects on antidepressant therapy. Thus, we aimed to evaluate the effect of CUMS on brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF) levels as well as the Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of female mice. We also aimed to examine the effect of a 28-day oral treatment with chrysin (5 or 20mg/kg) in female mice subjected to CUMS, comparing to the effect of fluoxetine. Results showed that CUMS applied for 28days induced a decrease in BDNF and NGF levels as well as in the Na(+),K(+)-ATPase activity. CUMS also promoted a depressive status in the swimming forced test (FST), in the sucrose preference test, and in corticosterone levels. Chrysin (20mg/kg) and fluoxetine also occasioned the up-regulation of BDNF and NGF levels in non-stressed mice and in mice subjected to CUMS. CUMS decreased non-protein thiol (NPSH) levels and increased reactive oxygen species (ROS) levels. In response to these changes, the glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were increased in mice exposed to CUMS. Chrysin and fluoxetine treatments protected against all these alterations, suggesting the involvement of the antioxidant function in the antidepressant effect of chrysin and fluoxetine. In conclusion, CUMS decreased BDNF and NGF levels as well as the Na(+),K(+)-ATPase activity in mice. Chrysin presented antidepressant effect in mice on behavioral, neurotrophic and biochemistry parameters equivalent to fluoxetine. Furthermore, we suggest that the up-regulation of BDNF and NGF levels is a mechanism possibly involved in the antidepressant effect of chrysin in mice.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013

Evidence for the involvement of the serotonergic 5-HT1A receptors in the antidepressant-like effect caused by hesperidin in mice

Leandro Cattelan Souza; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Lucian Del Fabbro; Carlos Borges Filho; Silvana Peterini Boeira; Cristiano R. Jesse

The present study investigated a possible antidepressant-like activity of hesperidin using two predictive tests for antidepressant effect in mice: the forced swimming test (FST) and the tail suspension test (TST). Results demonstrated that hesperidin (0.1, 0.3 and 1 mg/kg, intraperitoneal, i.p.) decreased the immobility time in the FST and TST without affecting the locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) on the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (pCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis) and WAY100635 (0.1 mg/kg, subcutaneous, s.c., a selective 5-HT(1A) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an α(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a β-adrenoceptor antagonist), AMPT (100 mg/kg, i.p., an inhibitor of tyrosine hydroxylase), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), ketanserin (1mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist) or MDL72222 (1 mg/kg, i.p., a 5-HT(3) receptor antagonist) did not block the antidepressant-like effect of hesperidin (0.3 mg/kg, i.p.) in the TST. Administration of hesperidin (0.01 mg/kg, i.p.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. The antidepressant-like effect caused by hesperidin in mice in the TST was dependent on an interaction with the serotonergic 5-HT(1A) receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like property and may be of interest source for therapeutic agent for the treatment of depressive disorders.


Nutrition | 2014

Protective effect of hesperidin in a model of Parkinson's disease induced by 6-hydroxydopamine in aged mice

Michelle S. Antunes; André Tiago Rossito Goes; Silvana Peterini Boeira; Marina Prigol; Cristiano R. Jesse

OBJECTIVE Parkinsons disease (PD) may be caused by the interaction of a number of factors, including genetics, toxins, oxidative stress, mitochondrial abnormalities, and aging. Studies have shown that consumption of an antioxidant-rich diet may reduce the incidence of neurodegenerative diseases. The aim of this study was to evaluate the role of the flavonoid hesperidin in an animal model of PD induced by 6-hidroxidopamine (6-OHDA). METHODS Aged mice were treated with hesperidin (50 mg/kg) during 28 d after an intracerebroventricular injection of 6-OHDA. The enzymatic activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione S-transferase, the levels of glutathione, reactive oxygen species, total reactive antioxidant potential, dopamine and its levels of metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid, was analyzed in the striatum. The behavioral parameters (depressive-like, memory, and locomotor) were measured. RESULTS This study demonstrated that hesperidin (50 mg/kg) treatment was effective in preventing memory impairment in the Morris water maze test, as well as, depressive-like behavior in the tail suspension test. Hesperidin attenuated the 6-OHDA-induced reduction in glutathione peroxidase and catalase activity, total reactive antioxidant potential and the dopamine and its metabolite levels in the striatum of aged mice. 6-OHDA increased reactive oxygen species levels and glutathione reductase activity in the striatum, and these alterations were mitigated by chronic administration of hesperidin. CONCLUSION This study demonstrated a protective effect of hesperidin on the neurotoxicity induced by 6-OHDA in aged mice, indicating that it could be useful as a therapy for the treatment of PD.


European Journal of Pharmacology | 2013

Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

Carlos Borges Filho; Lucian Del Fabbro; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Leandro Cattelan Souza; Silvana Peterini Boeira; Cristiano R. Jesse

The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders.


Pharmacology, Biochemistry and Behavior | 2015

Flavonoid Chrysin prevents age-related cognitive decline via attenuation of oxidative stress and modulation of BDNF levels in aged mouse brain

Leandro Cattelan Souza; Michelle S. Antunes; Carlos Borges Filho; Lucian Del Fabbro; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Franciele Donato; Marina Prigol; Silvana Peterini Boeira; Cristiano R. Jesse

In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent.


Life Sciences | 2013

Involvement of the dopaminergic and serotonergic systems in the antidepressant-like effect caused by 4-phenyl-1-(phenylselanylmethyl)-1,2,3-triazole.

Franciele Donato; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Natália Seus; Diego Alves; Cristiano R. Jesse; Lucielli Savegnago

AIMS The study investigated the antidepressant-like effect and acute toxicity of 4-phenyl-1-(phenylselanylmethyl)-1,2,3-triazole (Se-TZ), an organoselenium-containing heterocycle compound in mice. MAIN METHODS The antidepressant-like effect of Se-TZ (1-50mg/kg) and its mechanism of action, was analyzed in the tail suspension test (TST) in male C57BL/6J mice. Additionally, the levels of the monoamines and their metabolites in cerebral cortex and hippocampus were analyzed by high-performance liquid chromatography. To investigate the potential acute toxicity caused by Se-TZ, the mice received a single oral dose of Se-TZ (1-50mg/kg), and after 72h were performed the assays. KEY FINDINGS The Se-TZ (5-50mg/kg) significantly reduced immobility time in TST without altering locomotor and exploratory activities. The antidepressant-like effect of Se-TZ (25mg/kg) in the TST was prevented by pre-treatment of mice with SCH23390, sulpiride and methysergide, but not with prazosin, yohimbine and propranolol. Se-TZ, increased monoamine neurotransmitters dopamine and serotonin levels in the cerebral cortex and hippocampus, whereas norepinephrine turnover was not changed. This study also demonstrated that the Se-TZ, did not cause the acute toxicity in biochemical markers hepatic and renal investigated. The results evidenced that exposure to Se-TZ caused a significant increase in the catalase (CAT) activity in the cerebral cortex and hippocampus, however the glutathione S-transferase (GST) activity increased only in the cerebral cortex. SIGNIFICANCE These results suggest that Se-TZ demonstrated antidepressant-like effect, mediated via the central dopaminergic and serotoninergic neurotransmitter systems which may be of interest as a therapeutic agent for the treatment of depressive disorders.


Pharmaceutical Biology | 2015

Antinociceptive and anti-hyperalgesic effects of bis(4-methylbenzoyl) diselenide in mice: Evidence for the mechanism of action

Franciele Donato; Natasha Frasson Pavin; André Tiago Rossito Goes; Leandro Cattelan Souza; Letiére C. Soares; Oscar E. D. Rodrigues; Cristiano R. Jesse; Lucielli Savegnago

Abstract Context: The organoselenium compounds have been described to demonstrate several biological activities, including pain management. Objective: This study investigated the antinociceptive, hyperalgesic, and toxic effects of oral administration of bis(4-methylbenzoyl) diselenide (BMD) in mice. Materials and methods: The antinociceptive and anti-hyperalgesic effects of BMD (1, 5, 10, 25, and 50 mg/kg, p.o.) were evaluated using models of nociception: formalin, capsaicin, bradykinin (BK), cinnamaldehyde, phorbol myristate acetate (PMA), 8-bromo-cAM, and glutamate-induced nociception; and mechanical hyperalgesia induced by carrageenan (Cg) or complete Freunds adjuvant (CFA). The acute toxicity was evaluated by biochemical markers for hepatic and renal damages. Results: BMD significantly inhibited the licking time of the injected paw in the early and late phases of a formalin test with ED50 values of 14.2 and 10.8 mg/kg, respectively. This compound reduced nociception produced by capsaicin (ED50 of 32.5 mg/kg), BK (ED50 of 24.6 mg/kg), glutamate (ED50 of 28.7 mg/kg), cinnamaldehyde (ED50 of 18.9 mg/kg), PMA (ED50 of 9.6 mg/kg), and 8-bromo-cAMP (ED50 of 24.8 mg/kg). In the glutamate test, the pretreatment with nitric oxide (NO) precursor, l-arginine, reversed antinociception caused by BMD or Nω-nitro-l-arginine (L-NOARG), but the effect of BMD was not abolished by naloxone. Mechanical hyperalgesia induced by Cg and CFA was attenuated by BMD, 70 ± 4% and 65 ± 4%, respectively. Furthermore, a single oral dose of BMD did not change plasma aspartate (AST) and alanine aminotransferase (ALT) activities or urea and creatinine levels. Conclusion: BMD demonstrated as a promising compound because of the antinociceptive and anti-hyperalgesic properties in mice.


European Journal of Pharmacology | 2016

Neurochemical factors associated with the antidepressant-like effect of flavonoid chrysin in chronically stressed mice.

Carlos Borges Filho; Cristiano R. Jesse; Franciele Donato; Lucian Del Fabbro; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Leandro Cattelan Souza; Renata Giacomeli; Michelle S. Antunes; Cristiane Luchese; Silvane Souza Roman; Silvana Peterini Boeira

Chrysin is a flavonoid which is found in bee propolis, honey and various plants. Antidepressant-like effect of chrysin in chronically stressed mice was previously demonstrated by our group. Conversely, neurochemical factors associated with this effect require further investigations. Thus, we investigated the possible involvement of pro-inflammatory cytokines, kynurenine pathway (KP), 5-hydroxytryptamine (5-HT) metabolism and caspases activities in the effect of chrysin in mice exposed to unpredictable chronic stress (UCS). UCS applied for 28 days induced a depressive-like behavior, characterized by decrease in the time of grooming in the splash test and by increase in the immobility time in the tail suspension test. Oral treatment with chrysin (5 or 20mg/kg, 28 days), similarly to fluoxetine (10mg/kg, positive control), culminated in the prevention of these alterations. UCS elevated plasma levels of corticotropin-releasing hormone and adrenocorticotropic hormone, as well the tumor necrosis factor-α, interleukin-1β, interleukin-6 and kynurenine levels in the prefrontal cortex (PFC) and hippocampus (HP). UCS induced the decrease in the 5-HT levels in the HP and the increase in the indoleamine-2,3-dioxygenase, caspase 3 and 9 activities in the PFC and HP. Treatment with chrysin, similarly to fluoxetine, promoted the attenuation of these alterations occasioned by UCS. These results corroborated with the antidepressant potential of chrysin in the treatment of psychiatric diseases. Furthermore, this work indicated the association of pro-inflammatory cytokines synthesis, KP, 5-HT metabolism and caspases activities with the action exercised by chrysin in mice exposed to UCS.


Hormones and Behavior | 2015

Neuropeptide Y administration reverses tricyclic antidepressant treatment-resistant depression induced by ACTH in mice

Michelle S. Antunes; Jossana Rodrigues Ruff; Dieniffer de Oliveira Espinosa; Manuela Bastos Piegas; Maicon Lenon Otenio de Brito; Kellen Rocha; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Leandro Cattelan Souza; Franciele Donato; Silvana Peterini Boeira; Cristiano R. Jesse

Depression is one of the most common mental disorders and a primary cause of disability. To better treat patients suffering this illness, elucidation of the underlying psychopathological and neurobiological mechanisms is urgently needed. Based on the above-mentioned evidence, we sought to investigate the effects of neuropeptide Y (NPY) treatment in tricyclic antidepressant treatment-resistant depression induced by adrenocorticotropic hormone (ACTH) administration. Mice were treated with NPY (5.84, 11.7 or 23.4mmol/μl) intracerebroventricularly (i.c.v.) for one or five days. The levels of serum corticosterone, tryptophan (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and indoleamine 2,3-dioxygenase (IDO) activity in the hippocampus were analyzed. The behavioral parameters (depressive-like and locomotor activity) were also verified. This study demonstrated that ACTH administration increased serum corticosterone levels, KYN, 5-HIAA levels, IDO activity (hippocampus), immobility in the forced swimming test (FST) and the latency to feed in the novelty suppressed feeding test (NSFT). In addition, ACTH administration decreased the BDNF and NGF levels in the hippocampus of mice. NPY treatment was effective in preventing these hormonal, neurochemical and behavioral alterations. It is suggested that the main target of NPY is the modulation of corticosterone and neuronal plasticity protein levels, which may be closely linked with pharmacological action in a model of tricyclic antidepressant treatment-resistant depression. Thus, this study demonstrated a protective effect of NPY on the alterations induced by ACTH administration in mice, indicating that it could be useful as a therapy for the treatment of tricyclic antidepressant treatment-resistant depression.

Collaboration


Dive into the André Tiago Rossito Goes's collaboration.

Top Co-Authors

Avatar

Cristiano R. Jesse

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Borges Filho

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucian Del Fabbro

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar

Franciele Donato

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar

Michelle S. Antunes

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar

Cristiane Luchese

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Marina Prigol

Universidade Federal do Pampa

View shared research outputs
Researchain Logo
Decentralizing Knowledge