Carlos Borges Filho
Universidade Federal do Pampa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos Borges Filho.
Neuroscience | 2014
André Tiago Rossito Goes; Leandro Cattelan Souza; Carlos Borges Filho; L. Del Fabbro; M.G. de Gomes; Silvana Peterini Boeira; Cristiano R. Jesse
Parkinsons disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. The present study demonstrated that a 4-week ST was effective in attenuating the following impairments resulting from 6-OHDA exposure: (i) depressive-like behavior in the tail suspension test; (ii) increase in the number of falls in the rotarod test; (iii) impairment on long-term memory in the object recognition test; (iv) increase of the reactive species and interleukin 1-beta (IL-1β) levels; (v) inhibition of the glutathione peroxidase (GPx) activity; (vi) rise of the glutathione reductase (GR) and glutathione S-transferase (GST) activities and vii) decrease of DA, homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels. The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.
Neuroscience | 2015
Carlos Borges Filho; Cristiano R. Jesse; Franciele Donato; Renata Giacomeli; L. Del Fabbro; M. da Silva Antunes; M.G. de Gomes; André Tiago Rossito Goes; Silvana Peterini Boeira; Marina Prigol; Leandro Cattelan Souza
Our working hypothesis is that brain neurotrophins and brain Na(+),K(+)-ATPase may be strongly associated with the occurrence of depression in animals subjected to chronic unpredictable mild stress (CUMS). Still, we believe that chrysin, a natural and bioactive flavonoid found in honey and some plants, can provide satisfactory effects on antidepressant therapy. Thus, we aimed to evaluate the effect of CUMS on brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF) levels as well as the Na(+),K(+)-ATPase activity in the hippocampus and prefrontal cortex of female mice. We also aimed to examine the effect of a 28-day oral treatment with chrysin (5 or 20mg/kg) in female mice subjected to CUMS, comparing to the effect of fluoxetine. Results showed that CUMS applied for 28days induced a decrease in BDNF and NGF levels as well as in the Na(+),K(+)-ATPase activity. CUMS also promoted a depressive status in the swimming forced test (FST), in the sucrose preference test, and in corticosterone levels. Chrysin (20mg/kg) and fluoxetine also occasioned the up-regulation of BDNF and NGF levels in non-stressed mice and in mice subjected to CUMS. CUMS decreased non-protein thiol (NPSH) levels and increased reactive oxygen species (ROS) levels. In response to these changes, the glutathione reductase (GR), glutathione peroxidase (GPx) and catalase (CAT) activities were increased in mice exposed to CUMS. Chrysin and fluoxetine treatments protected against all these alterations, suggesting the involvement of the antioxidant function in the antidepressant effect of chrysin and fluoxetine. In conclusion, CUMS decreased BDNF and NGF levels as well as the Na(+),K(+)-ATPase activity in mice. Chrysin presented antidepressant effect in mice on behavioral, neurotrophic and biochemistry parameters equivalent to fluoxetine. Furthermore, we suggest that the up-regulation of BDNF and NGF levels is a mechanism possibly involved in the antidepressant effect of chrysin in mice.
Progress in Neuro-psychopharmacology & Biological Psychiatry | 2013
Leandro Cattelan Souza; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Lucian Del Fabbro; Carlos Borges Filho; Silvana Peterini Boeira; Cristiano R. Jesse
The present study investigated a possible antidepressant-like activity of hesperidin using two predictive tests for antidepressant effect in mice: the forced swimming test (FST) and the tail suspension test (TST). Results demonstrated that hesperidin (0.1, 0.3 and 1 mg/kg, intraperitoneal, i.p.) decreased the immobility time in the FST and TST without affecting the locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) on the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (pCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis) and WAY100635 (0.1 mg/kg, subcutaneous, s.c., a selective 5-HT(1A) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an α(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an α(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a β-adrenoceptor antagonist), AMPT (100 mg/kg, i.p., an inhibitor of tyrosine hydroxylase), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), ketanserin (1mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist) or MDL72222 (1 mg/kg, i.p., a 5-HT(3) receptor antagonist) did not block the antidepressant-like effect of hesperidin (0.3 mg/kg, i.p.) in the TST. Administration of hesperidin (0.01 mg/kg, i.p.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. The antidepressant-like effect caused by hesperidin in mice in the TST was dependent on an interaction with the serotonergic 5-HT(1A) receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like property and may be of interest source for therapeutic agent for the treatment of depressive disorders.
European Journal of Pharmacology | 2013
Carlos Borges Filho; Lucian Del Fabbro; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Leandro Cattelan Souza; Silvana Peterini Boeira; Cristiano R. Jesse
The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders.
Chemico-Biological Interactions | 2015
Silvana Peterini Boeira; Vinícius Rafael Funck; Carlos Borges Filho; Lucian Del Fabbro; Marcelo Gomes de Gomes; Franciele Donato; Luiz Fernando Freire Royes; Mauro Schneider Oliveira; Cristiano R. Jesse; Ana Flávia Furian
Male mice received lycopene for 10 days before a single oral administration of zearalenone (ZEA). After 48 h testes and blood were collected. Mice treated with lycopene/ZEA exhibited amelioration of the hematological changes. Lycopene prevented the reduction in the number and motility of spermatozoa and testosterone levels, indicating a protective effect in the testicular damage induced by ZEA. Lycopene was also effective in protecting against the decrease in glutathione-S-transferase, glutathione peroxidase, glutathione reductase and δ-aminolevulinic acid dehydratase activities caused by ZEA in the testes. Exposure of animals to ZEA induced modification of antioxidant and inflammatory status with increase of reduced glutathione (GSH) levels and increase of the oxidized glutathione, interleukins 1β, 2, 6, 10, tumor necrosis factor-α and bilirubin levels. Lycopene prevented ZEA-induced changes in GSH levels and inhibited the processes of inflammation, reducing the damage induced by ZEA. Altogether, our results indicate that lycopene was able to prevent ZEA-induced damage in the mice.
Pharmacology, Biochemistry and Behavior | 2015
Leandro Cattelan Souza; Michelle S. Antunes; Carlos Borges Filho; Lucian Del Fabbro; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Franciele Donato; Marina Prigol; Silvana Peterini Boeira; Cristiano R. Jesse
In this study, the effect of Chrysin (5,7-dihydroxyflavone), an important member of the flavonoid family, on memory impairment, oxidative stress and BDNF reduction generated by aging in mice were investigated. Young and aged mice were treated daily per 60days with Chrysin (1 and 10mg/kg; per oral, p.o.) or veichle (10ml/kg; p.o.). Mice were trained and tested in Morris Water Maze task. After the behavioural test, the levels of reactive species (RS), the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the activity of Na(+), K(+)-ATPase and the levels of brain-derived neurotrophic factor (BDNF) were determined in the prefrontal cortex (PFC) and hippocampus (HC) of mice. Results demonstrated that the age-related memory decline was partially protected by Chrysin at a dose of 1mg/kg, and normalized at the dose of 10mg/kg (p<0.001). Treatment with Chrysin significantly attenuated the increase of RS levels and the inhibition of SOD, CAT and GPx activities of aged mice. Inhibition of Na(+), K(+)-ATPase activity in PFC and HP of aged mice was also attenuated by Chrysin treatment. Moreover, Chrysin marked mitigated the decrease of BDNF levels in the PFC and HC of aged mice. These results demonstrated that flavonoid Chrysin, an antioxidant compound, was able to prevent age-associated memory probably by their free radical scavenger action and modulation of BDNF production. Thus, this study indicates that Chrysin may represent a new pharmacological approach to alleviate the age-related declines during normal age, acting as an anti-aging agent.
Experimental and Toxicologic Pathology | 2014
Silvana Peterini Boeira; Carlos Borges Filho; Lucian Del Fabbro; Silvane Souza Roman; Luiz Fernando Freire Royes; Michele Rechia Fighera; Cristiano R. Jesse; Mauro Schneider Oliveira; Ana Flávia Furian
Zearalenone (ZEA) is a mycotoxin commonly found as a contaminant in cereals. ZEA toxicity targets mainly the reproductive system, and oxidative stress plays an etiological role in its toxic effects. Therefore, the present study aimed to investigate the effect of lycopene, a potent carotenoid antioxidant, on markers of oxidative stress in liver, kidney and testes, and on reproductive, hematological and histopathological parameters after ZEA administration. Adult Swiss albino male mice received lycopene (20mg/kg, p.o.) for ten days before a single oral administration of ZEA (40mg/kg, p.o.), and 48h thereafter tissues (liver, kidney, testes and blood) were collected for biochemical, hematological and histological analyses. Lycopene prevented ZEA-induced changes in hematological parameters (increased number of leukocytes, segmented neutrophils, sticks, eosinophils and monocytes and decreased number of red blood cells (RBC), number of lymphocytes and platelets). Moreover, lycopene prevented the reduction in the number and motility of spermatozoa and the testicular tissue damage induced by ZEA. In addition, lycopene prevented the decrease in glutathione-S-transferase activity in kidney and testes and increased glutathione-S-transferase activity per se in the liver, kidneys and testes as well as superoxide dismutase activity in the liver. In summary, lycopene was able to prevent ZEA-induced acute toxic effects in male mice, suggesting that this antioxidant carotenoid may represent a promising prophylactic strategy against ZEA toxicity.
Toxicon | 2012
Silvana Peterini Boeira; Carlos Borges Filho; Lucian Del Fabbro; Luiz Fernando Freire Royes; Cristiano R. Jesse; Mauro Schneider Oliveira; Ana Flávia Furian
Zearalenone (ZEA) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium, commonly found in the soil in temperate and warm countries and is a frequent contaminant of cereal crops worldwide. Accordingly, it has been implicated in several mycotoxicosis in farm animals and in humans, but the underlying mechanisms remain largely unknown. Therefore, the current study was aimed to investigate the effect of an acute dose of ZEA (40 mg/kg, p.o.) on reproductive and hematological parameters, as well as on markers of oxidative stress in liver, kidney and testes in mice. Adult Swiss albino male mice were exposed to a single oral administration of ZEA, and 48 h thereafter behavioral and biochemical tests were performed. No differences in locomotor or exploratory activity were observed in the open-field test. On the other hand, ZEA increased the number of leukocytes, segmented neutrophils, sticks, eosinophils, monocytes and decreased platelets and lymphocytes number. Moreover, ZEA drastically reduced the number and motility of live spermatozoa. Additionally, while levels of thiobarbituric acid reactive substances (TBARS), non-protein thiols (NPSH) and ascorbic acid in liver, kidney and testes were not altered by ZEA administration, superoxide dismutase activity increased in all tissues evaluated, catalase activity increased in the kidney, and glutathione-S-transferase activity decreased in kidney and testes. In summary, we showed that ZEA have acute toxic effects mainly in reproductive system of adult male Swiss albino mice and its effect probably is related to a reduced activity of GST and increased in SOD activity in testes.
Brain Research | 2012
Lucian Del Fabbro; Carlos Borges Filho; Leandro Cattelan Souza; Lucielli Savegnago; Diego Alves; Paulo H. Schneider; Helena Domingues de Salles; Cristiano R. Jesse
In this study, we investigated the therapeutic effects of treatment with (R)-Se-phenyl thiazolidine-4-carboselenoate (Se-PTC), an organic selenium compound with antinociceptive properties, against mechanical and thermal hyperalgesia induced by brachial plexus avulsion (BPA), a neuropathic model in mice. The involvement of cannabinoid CB(1) and CB(2) receptors in the Se-PTC anti-hyperalgesic effect was also investigated. Se-PTC treatment at (25 and 50mg/kg, per oral, p.o.) lowered (BPA model) induced mechanical and thermal hyperalgesia in mice. Pretreatment with cannabinoid CB(1) (AM251; 1mg/kg, intraperitoneally, i.p.), or CB(2) (AM630; 3mg/kg, i.p.) receptor antagonists reverted the mechanical and thermal anti-hyperalgesic effect of Se-PTC (25mg/kg) in the BPA model. Selective CB(1) (ACEA, 10mg/kg, i.p.) and CB(2) (JWH-133, 10mg/kg, i.p.) receptor agonists lowered mechanical and thermal hyperalgesia in the BPA model, and this effect was prevented by selective CB(1) and CB(2) receptor antagonists. Gabapentin (70mg/kg, p.o.), positive control administration also lowered mechanical and thermal hyperalgesia in the BPA model. The results suggest that the mechanical and thermal hyperalgesia observed following BPA in mice is dependent on cannabinoid receptors. The results indicate that modulating cannabinoid receptors represent a valuable approach for the treatment of neuropathic pain. In conclusion, the results suggested that Se-PTC produces pronounced mechanical and thermal anti-hyperalgesic effects in neuropathic models in mice by modulating CB(1) and CB(2) receptors.
European Journal of Pharmacology | 2016
Carlos Borges Filho; Cristiano R. Jesse; Franciele Donato; Lucian Del Fabbro; Marcelo Gomes de Gomes; André Tiago Rossito Goes; Leandro Cattelan Souza; Renata Giacomeli; Michelle S. Antunes; Cristiane Luchese; Silvane Souza Roman; Silvana Peterini Boeira
Chrysin is a flavonoid which is found in bee propolis, honey and various plants. Antidepressant-like effect of chrysin in chronically stressed mice was previously demonstrated by our group. Conversely, neurochemical factors associated with this effect require further investigations. Thus, we investigated the possible involvement of pro-inflammatory cytokines, kynurenine pathway (KP), 5-hydroxytryptamine (5-HT) metabolism and caspases activities in the effect of chrysin in mice exposed to unpredictable chronic stress (UCS). UCS applied for 28 days induced a depressive-like behavior, characterized by decrease in the time of grooming in the splash test and by increase in the immobility time in the tail suspension test. Oral treatment with chrysin (5 or 20mg/kg, 28 days), similarly to fluoxetine (10mg/kg, positive control), culminated in the prevention of these alterations. UCS elevated plasma levels of corticotropin-releasing hormone and adrenocorticotropic hormone, as well the tumor necrosis factor-α, interleukin-1β, interleukin-6 and kynurenine levels in the prefrontal cortex (PFC) and hippocampus (HP). UCS induced the decrease in the 5-HT levels in the HP and the increase in the indoleamine-2,3-dioxygenase, caspase 3 and 9 activities in the PFC and HP. Treatment with chrysin, similarly to fluoxetine, promoted the attenuation of these alterations occasioned by UCS. These results corroborated with the antidepressant potential of chrysin in the treatment of psychiatric diseases. Furthermore, this work indicated the association of pro-inflammatory cytokines synthesis, KP, 5-HT metabolism and caspases activities with the action exercised by chrysin in mice exposed to UCS.