Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Barta is active.

Publication


Featured researches published by Andrea Barta.


Genome Research | 2012

Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis

Yamile Marquez; John W. S. Brown; Craig G. Simpson; Andrea Barta; Maria Kalyna

Alternative splicing (AS) is a key regulatory mechanism that contributes to transcriptome and proteome diversity. As very few genome-wide studies analyzing AS in plants are available, we have performed high-throughput sequencing of a normalized cDNA library which resulted in a high coverage transcriptome map of Arabidopsis. We detect ∼150,000 splice junctions derived mostly from typical plant introns, including an eightfold increase in the number of U12 introns (2069). Around 61% of multiexonic genes are alternatively spliced under normal growth conditions. Moreover, we provide experimental validation of 540 AS transcripts (from 256 genes coding for important regulatory factors) using high-resolution RT-PCR and Sanger sequencing. Intron retention (IR) is the most frequent AS event (∼40%), but many IRs have relatively low read coverage and are less well-represented in assembled transcripts. Additionally, ∼51% of Arabidopsis genes produce AS transcripts which do not involve IR. Therefore, the significance of IR in generating transcript diversity was generally overestimated in previous assessments. IR analysis allowed the identification of a large set of cryptic introns inside annotated coding exons. Importantly, a significant fraction of these cryptic introns are spliced out in frame, indicating a role in protein diversity. Furthermore, we show extensive AS coupled to nonsense-mediated decay in AFC2, encoding a highly conserved LAMMER kinase which phosphorylates splicing factors, thus establishing a complex loop in AS regulation. We provide the most comprehensive analysis of AS to date which will serve as a valuable resource for the plant community to study transcriptome complexity and gene regulation.


The Plant Cell | 2013

Complexity of the Alternative Splicing Landscape in Plants

Yamile Marquez; Maria Kalyna; Andrea Barta

Alternative splicing (AS) of precursor mRNAs (pre-mRNAs) from multiexon genes allows organisms to increase their coding potential and regulate gene expression through multiple mechanisms. Recent transcriptome-wide analysis of AS using RNA sequencing has revealed that AS is highly pervasive in plants. Pre-mRNAs from over 60% of intron-containing genes undergo AS to produce a vast repertoire of mRNA isoforms. The functions of most splice variants are unknown. However, emerging evidence indicates that splice variants increase the functional diversity of proteins. Furthermore, AS is coupled to transcript stability and translation through nonsense-mediated decay and microRNA-mediated gene regulation. Widespread changes in AS in response to developmental cues and stresses suggest a role for regulated splicing in plant development and stress responses. Here, we review recent progress in uncovering the extent and complexity of the AS landscape in plants, its regulation, and the roles of AS in gene regulation. The prevalence of AS in plants has raised many new questions that require additional studies. New tools based on recent technological advances are allowing genome-wide analysis of RNA elements in transcripts and of chromatin modifications that regulate AS. Application of these tools in plants will provide significant new insights into AS regulation and crosstalk between AS and other layers of gene regulation.


Nature Reviews Molecular Cell Biology | 2004

Strategies for RNA folding and assembly

Renée Schroeder; Andrea Barta; Katharina Semrad

RNA is structurally very flexible, which provides the basis for its functional diversity. An RNA molecule can often adopt different conformations, which enables the regulation of its function through folding. Proteins help RNAs reach their functionally active conformation by increasing their structural stability or by chaperoning the folding process. Large, dynamic RNA–protein complexes, such as the ribosome or the spliceosome, require numerous proteins that coordinate conformational switches of the RNA components during assembly and during their respective activities.


Nucleic Acids Research | 2012

Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

Maria Kalyna; Craig G. Simpson; Naeem H. Syed; Dominika Lewandowska; Yamile Marquez; Branislav Kusenda; Jacqueline Marshall; John Fuller; Linda Cardle; James W. McNicol; Huy Q. Dinh; Andrea Barta; John W. S. Brown

Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes.


Trends in Plant Science | 2012

Alternative splicing in plants – coming of age

Naeem H. Syed; Maria Kalyna; Yamile Marquez; Andrea Barta; John W. S. Brown

More than 60% of intron-containing genes undergo alternative splicing (AS) in plants. This number will increase when AS in different tissues, developmental stages, and environmental conditions are explored. Although the functional impact of AS on protein complexity is still understudied in plants, recent examples demonstrate its importance in regulating plant processes. AS also regulates transcript levels and the link with nonsense-mediated decay and generation of unproductive mRNAs illustrate the need for both transcriptional and AS data in gene expression analyses. AS has influenced the evolution of the complex networks of regulation of gene expression and variation in AS contributed to adaptation of plants to their environment and therefore will impact strategies for improving plant and crop phenotypes.


Plant Molecular Biology | 1986

The expression of a nopaline synthase — human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue

Andrea Barta; Karin Sommergruber; Diana Thompson; Klaus Hartmuth; Marjori Matzke; Antionius J. M. Matzke

SummaryTo study whether mammalian RNA processing signals function in plants, we have constructed a chimaeric gene in which the complete human growth hormone (hGH) gene is flanked by DNA fragments containing the promoter and polyadenylation site of the nopaline synthase gene. The hGH gene used contains four introns and an additional 440 bp downstream from the hGH poly(A) addition site. The transcription of this chimaeric gene was studied following its introduction into sunflower and tobacco cells using a Ti plasmid vector. Analysis of poly(A)+ RNA isolated from the transformed tumor tissue demonstrated the following: (1) a single polyadenylated transcript, 2700 bp in length, was transcribed from the chimaeric gene; (2) the transcription was initiated at the published start site of the nopaline synthase gene; (3) the hGH polyadenylation site was not used for processing of the 3′ end; only the poly(A) addition site of the nopaline synthase gene was recognized, (4) no splicing of the hGH introns could be detected. We also demonstrate that the hGH pre-mRNA isolated from plant cells can be spliced in a HeLa cell nuclear extract, indicating that the hGH pre-mRNA was functional. These results show that processing signals of the hGH pre-mRNA are not recognized in these plant cells.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition

Mark A. Bayfield; Albert E. Dahlberg; Ulrike Schulmeister; Silke Dorner; Andrea Barta

The ribosome is a dynamic particle that undergoes many structural changes during translation. We show through chemical probing with dimethyl sulfate (DMS) that conformational changes occur at several nucleotides in the peptidyl transferase center upon alterations in pH, temperature, and monovalent ion concentration, consistent with observations made by Elson and coworkers over 30 years ago. Moreover, we have found that the pH-dependent DMS reactivity of A2451 in the center of the 23S rRNA peptidyl transferase region, ascribed to a perturbed pKa of this base, occurs only in inactive 50S and 70S ribosomes. The degree of DMS reactivity of this base in the inactive ribosomes depends on both the identity and amount of monovalent ion present. Furthermore, G2447, a residue proposed to be critical for the hypothesized pKa perturbation, is not essential for the conditional DMS reactivity at A2451. Given that the pH-dependent change in DMS reactivity at A2451 occurs only in inactive ribosomes, and that this DMS reactivity can increase with increasing salt (independently of pH), we conclude that this observation cannot be used as supporting evidence for a recently proposed model of acid/base catalyzed ribosomal transpeptidation.


Journal of Proteome Research | 2008

Site-Specific Phosphorylation Profiling of Arabidopsis Proteins by Mass Spectrometry and Peptide Chip Analysis

Sergio de la Fuente van Bentem; Dorothea Anrather; Ilse Dohnal; Elisabeth Roitinger; Edina Csaszar; Jos Joore; Joshua Buijnink; Alessandro Carreri; Celine Forzani; Zdravko J. Lorković; Andrea Barta; David Lecourieux; Andreas Verhounig; Claudia Jonak; Heribert Hirt

An estimated one-third of all proteins in higher eukaryotes are regulated by phosphorylation by protein kinases (PKs). Although plant genomes encode more than 1000 PKs, the substrates of only a small fraction of these kinases are known. By mass spectrometry of peptides from cytoplasmic- and nuclear-enriched fractions, we determined 303 in vivo phosphorylation sites in Arabidopsis proteins. Among 21 different PKs, 12 were phosphorylated in their activation loops, suggesting that they were in their active state. Immunoblotting and mutational analysis confirmed a tyrosine phosphorylation site in the activation loop of a GSK3/shaggy-like kinase. Analysis of phosphorylation motifs in the substrates suggested links between several of these PKs and many target sites. To perform quantitative phosphorylation analysis, peptide arrays were generated with peptides corresponding to in vivo phosphorylation sites. These peptide chips were used for kinome profiling of subcellular fractions as well as H 2O 2-treated Arabidopsis cells. Different peptide phosphorylation profiles indicated the presence of overlapping but distinct PK activities in cytosolic and nuclear compartments. Among different H 2O 2-induced PK targets, a peptide of the serine/arginine-rich (SR) splicing factor SCL30 was most strongly affected. SRPK4 (SR protein-specific kinase 4) and MAPKs (mitogen-activated PKs) were found to phosphorylate this peptide, as well as full-length SCL30. However, whereas SRPK4 was constitutively active, MAPKs were activated by H 2O 2. These results suggest that SCL30 is targeted by different PKs. Together, our data demonstrate that a combination of mass spectrometry with peptide chip phosphorylation profiling has a great potential to unravel phosphoproteome dynamics and to identify PK substrates.


Experimental Cell Research | 2003

Proto-oncoprotein tls/fus is associated to the nuclear matrix and complexed with splicing factors ptb, srm160, and sr proteins

Michael Meissner; Sergiy Lopato; Josef Gotzmann; Georg Sauermann; Andrea Barta

TLS/FUS is a nucleic acid-binding protein whose N-terminal half functions as a transcriptional activator domain in fusion oncoproteins found in human leukemias and liposarcomas. Previous reports have suggested a role for TLS/FUS in transcription and splicing processes. Here we report the association of TLS/FUS with the nuclear matrix and investigate its role in splicing. Splicing of two pre-mRNAs was inhibited in a TLS/FUS-immunodepleted extract and could only be partly restored by addition of recombinant TLS/FUS or/and SR proteins, known interaction partners of TLS/FUS. The subsequent analysis of TLS/FUS immunoprecipitates revealed that, in addition to the SR proteins SC35 and SRp75, the splicing factor PTB (hnRNPI) and the splicing coactivator SRm160 are complexed with TLS/FUS, thus explaining the inability to restore splicing completely. Coimmunolocalization confirmed the nuclear matrix association and interaction of TLS/FUS with PTB, SR proteins, and SRm160. Our results suggest that the matrix protein TLS/FUS plays a role in spliceosome assembly.


Nucleic Acids Research | 2006

Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins

Maria Kalyna; Sergiy Lopato; Viktor Voronin; Andrea Barta

Alternative splicing is an important mechanism for fine tuning of gene expression at the post-transcriptional level. SR proteins govern splice site selection and spliceosome assembly. The Arabidopsis genome encodes 19 SR proteins, several of which have no orthologues in metazoan. Three of the plant specific subfamilies are characterized by the presence of a relatively long alternatively spliced intron located in their first RNA recognition motif, which potentially results in an extremely truncated protein. In atRSZ33, a member of the RS2Z subfamily, this alternative splicing event was shown to be autoregulated. Here we show that atRSp31, a member of the RS subfamily, does not autoregulate alternative splicing of its similarily positioned intron. Interestingly, this alternative splicing event is regulated by atRSZ33. We demonstrate that the positions of these long introns and their capability for alternative splicing are conserved from green algae to flowering plants. Moreover, in particular alternative splicing events the splicing signals are embedded into highly conserved sequences. In different taxa, these conserved sequences occur in at least one gene within a subfamily. The evolutionary preservation of alternative splice forms together with highly conserved intron features argues for additional functions hidden in the genes of these plant-specific SR proteins.

Collaboration


Dive into the Andrea Barta's collaboration.

Top Co-Authors

Avatar

Maria Kalyna

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yamile Marquez

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Zdravko J. Lorković

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Craig G. Simpson

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heribert Hirt

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dominika Lewandowska

Scottish Crop Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge