Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominika Lewandowska is active.

Publication


Featured researches published by Dominika Lewandowska.


Nucleic Acids Research | 2012

Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis

Maria Kalyna; Craig G. Simpson; Naeem H. Syed; Dominika Lewandowska; Yamile Marquez; Branislav Kusenda; Jacqueline Marshall; John Fuller; Linda Cardle; James W. McNicol; Huy Q. Dinh; Andrea Barta; John W. S. Brown

Alternative splicing (AS) coupled to nonsense-mediated decay (NMD) is a post-transcriptional mechanism for regulating gene expression. We have used a high-resolution AS RT–PCR panel to identify endogenous AS isoforms which increase in abundance when NMD is impaired in the Arabidopsis NMD factor mutants, upf1-5 and upf3-1. Of 270 AS genes (950 transcripts) on the panel, 102 transcripts from 97 genes (32%) were identified as NMD targets. Extrapolating from these data around 13% of intron-containing genes in the Arabidopsis genome are potentially regulated by AS/NMD. This cohort of naturally occurring NMD-sensitive AS transcripts also allowed the analysis of the signals for NMD in plants. We show the importance of AS in introns in 5′ or 3′UTRs in modulating NMD-sensitivity of mRNA transcripts. In particular, we identified upstream open reading frames overlapping the main start codon as a new trigger for NMD in plants and determined that NMD is induced if 3′-UTRs were >350 nt. Unexpectedly, although many intron retention transcripts possess NMD features, they are not sensitive to NMD. Finally, we have shown that AS/NMD regulates the abundance of transcripts of many genes important for plant development and adaptation including transcription factors, RNA processing factors and stress response genes.


The Plant Cell | 2009

Aberrant mRNA Transcripts and the Nonsense-Mediated Decay Proteins UPF2 and UPF3 Are Enriched in the Arabidopsis Nucleolus

Sang Hyon Kim; Olga Koroleva; Dominika Lewandowska; Ali Pendle; Gillian P. Clark; Craig G. Simpson; Peter Shaw; John W. S. Brown

The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.


The Plant Cell | 2009

Dynamic Behavior of Arabidopsis eIF4A-III, Putative Core Protein of Exon Junction Complex: Fast Relocation to Nucleolus and Splicing Speckles under Hypoxia

Olga Koroleva; Grant Calder; Alison F. Pendle; Sang Hyon Kim; Dominika Lewandowska; Craig G. Simpson; Ian Martin Jones; John W. S. Brown; Peter Shaw

Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.


Nucleic Acids Research | 2010

Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana

Katarzyna Dorota Raczynska; Craig G. Simpson; Adam Ciesiolka; Lukasz Szewc; Dominika Lewandowska; James W. McNicol; Zofia Szweykowska-Kulinska; John W. S. Brown; Artur Jarmolowski

The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site.


Gene | 2002

Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex.

Maciej Kmieciak; Craig G. Simpson; Dominika Lewandowska; John W. S. Brown; Artur Jarmolowski

In this report we characterize two Arabidopsis thaliana proteins, named AtCBP20 and AtCBP80, that are homologues of human subunits of a nuclear cap-binding protein complex (CBC). AtCBP20 has a calculated molecular mass of 29.9 kDa, and AtCBP80 is a 96.5 kDa protein. AtCBP20 exhibits 68% identity and 82% similarity to human CBP20. Like its human homologue, AtCBP20 contains a canonical RNA binding domain (RBD) with single RNP2 and RNP1 motifs. In addition to the N-terminal part, which is similar to the human protein, AtCBP20 has a long C-terminus rich in arginine, glycine and aspartate residues. The second subunit of the Arabidopsis cap-binding complex, AtCBP80, shows 28% identity and 50% similarity to its homologue from HeLa cells. The protein contains a MIF4G domain at its N-terminus, the feature characteristic to all analyzed CBP80s. This domain, described also in eIF4G and NMD2 proteins, is thought to be involved in protein-protein and also in protein--RNA interactions. Both proteins AtCBP20 and AtCBP80 are encoded by single-copy genes in the A. thaliana genome. The AtCBP20 gene is located on chromosome V, and the AtCBP80 gene is encoded by chromosome II. Among introns identified in the AtCBP20 gene, we discovered an U12 type intervening sequence (an AT-AC intron). This intron is spliced out very efficiently in plants, but when isolated and tested for splicing in tobacco protoplasts, the efficiency of the U12 intron excision was low. Splicing efficiency of the U12 intron is improved by the addition of exon and intron sequences upstream or downstream of the U12 intron. AtCBP20 and AtCBP80 are constitutively expressed in all examined organs of A. thaliana, including roots, stems, leaves and flowers. Interestingly, the steady-state level of both transcripts seem to be very similar in all tissues analyzed.


Biochemical Society Transactions | 2008

Alternative splicing in plants

Craig G. Simpson; Dominika Lewandowska; John Fuller; Monika Maronova; Maria Kalyna; Diane Davidson; James W. McNicol; Dorota Raczynska; Artur Jarmolowski; Andrea Barta; John W. S. Brown

The impact of AS (alternative splicing) is well-recognized in animal systems as a key regulator of gene expression and proteome complexity. In plants, AS is of growing importance as more genes are found to undergo AS, but relatively little is known about the factors regulating AS or the consequences of AS on mRNA levels and protein function. We have established an accurate and reproducible RT (reverse transcription)-PCR system to analyse AS in multiple genes. Initial studies have identified new AS events confirming that current values for the frequency of AS in plants are likely to be underestimates.


The Plant Cell | 2004

Determinants of Plant U12-Dependent Intron Splicing Efficiency

Dominika Lewandowska; Craig G. Simpson; Gillian P. Clark; Nikki S. Jennings; Maria Barciszewska-Pacak; Chiao-Feng Lin; Wojciech Makalowski; John W. S. Brown; Artur Jarmolowski

Factors affecting splicing of plant U12-dependent introns have been examined by extensive mutational analyses in an in vivo tobacco (Nicotiana tabacum) protoplast system using introns from three different Arabidopsis thaliana genes: CBP20, GSH2, and LD. The results provide evidence that splicing efficiency of plant U12 introns depends on a combination of factors, including UA content, exon bridging interactions between the U12 intron and flanking U2-dependent introns, and exon splicing enhancer sequences (ESEs). Unexpectedly, all three plant U12 introns required an adenosine at the upstream purine position in the branchpoint consensus UCCUURAUY. The exon upstream of the LD U12 intron is a major determinant of its higher level of splicing efficiency and potentially contains two ESE regions. These results suggest that in plants, U12 introns represent a level at which expression of their host genes can be regulated.


PLOS ONE | 2013

Plant SILAC: Stable-Isotope Labelling with Amino Acids of Arabidopsis Seedlings for Quantitative Proteomics

Dominika Lewandowska; Sara ten Have; Kelly Hodge; Vinciane Tillemans; Angus I. Lamond; John W. S. Brown

Stable Isotope Labelling by Amino acids in Cell culture (SILAC) is a powerful technique for comparative quantitative proteomics, which has recently been applied to a number of different eukaryotic organisms. Inefficient incorporation of labelled amino acids in cell cultures of Arabidopsis thaliana has led to very limited use of SILAC in plant systems. We present a method allowing, for the first time, efficient labelling with stable isotope-containing arginine and lysine of whole Arabidopsis seedlings. To illustrate the utility of this method, we have combined the high labelling efficiency (>95%) with quantitative proteomics analyses of seedlings exposed to increased salt concentration. In plants treated for 7 days with 80 mM NaCl, a relatively mild salt stress, 215 proteins were identified whose expression levels changed significantly compared to untreated seedling controls. The 92 up-regulated proteins included proteins involved in abiotic stress responses and photosynthesis, while the 123 down-regulated proteins were enriched in proteins involved in reduction of oxidative stress and other stress responses, respectively. Efficient labelling of whole Arabidopsis seedlings by this modified SILAC method opens new opportunities to exploit the genetic resources of Arabidopsis and analyse the impact of mutations on quantitative protein dynamics in vivo.


Nucleic Acids Research | 2017

A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

Runxuan Zhang; Cristiane P. G. Calixto; Yamile Marquez; Peter Venhuizen; Nikoleta A. Tzioutziou; Wenbin Guo; Mark Spensley; Juan Carlos Entizne; Dominika Lewandowska; Sara ten Have; Nicolas Frei dit Frey; Heribert Hirt; Allan B. James; Hugh G. Nimmo; Andrea Barta; Maria Kalyna; John W. S. Brown

Abstract Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.


Molecular Biology of the Cell | 2004

Proteomic Analysis of the Arabidopsis Nucleolus Suggests Novel Nucleolar Functions

Alison F. Pendle; Gillian P. Clark; Reinier Boon; Dominika Lewandowska; Yun Wah Lam; Jens S. Andersen; Matthias Mann; Angus I. Lamond; John W. S. Brown; Peter Shaw

Collaboration


Dive into the Dominika Lewandowska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gillian P. Clark

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Hyon Kim

Scottish Crop Research Institute

View shared research outputs
Top Co-Authors

Avatar

Andrea Barta

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Maria Kalyna

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge