Andrea Bednářová
Mississippi State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andrea Bednářová.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2013
Andrea Bednářová; Dalibor Kodrík; Natraj Krishnan
Glucagon is conventionally regarded as a hormone, counter regulatory in function to insulin and plays a critical anti-hypoglycemic role by maintaining glucose homeostasis in both animals and humans. Glucagon performs this function by increasing hepatic glucose output to the blood by stimulating glycogenolysis and gluconeogenesis in response to starvation. Additionally it plays a homeostatic role by decreasing glycogenesis and glycolysis in tandem to try and maintain optimal glucose levels. To perform this action, it also increases energy expenditure which is contrary to what one would expect and has actions which are unique and not entirely in agreement with its role in protection from hypoglycemia. Interestingly, glucagon-like peptides (GLP-1 and GLP-2) from the major fragment of proglucagon (in non-mammalian vertebrates, as well as in mammals) may also modulate response to stress in addition to their other physiological actions. These unique modes of action occur in response to psychological, metabolic and other stress situations and mirror the role of adipokinetic hormones (AKHs) in insects which perform a similar function. The findings on the anti-stress roles of glucagon and glucagon-like peptides in mammalian and non-mammalian vertebrates may throw light on the multiple stress responsive mechanisms which operate in a concerted manner under regulation by AKH in insects thus functioning as a stress responsive hormone while also maintaining organismal homeostasis.
International Journal of Molecular Sciences | 2015
Dalibor Kodrík; Andrea Bednářová; Milada Zemanová; Natraj Krishnan
Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.
Physiological Entomology | 2013
Andrea Bednářová; Natraj Krishnan; I-Cheng Cheng; Josef Večeřa; How-Jing Lee; Dalibor Kodrík
The role of adipokinetic hormone (AKH) in counteracting oxidative stress elicited in the insect body is studied in response to exogenously applied hydrogen peroxide, an important metabolite of oxidative processes. In vivo experiments reveal that the injection of hydrogen peroxide (8 µmol) into the haemocoel of the firebug, Pyrrhocoris apterus L. (Heteroptera: Pyrrhocoridae) increases the level of AKH by 2.8‐fold in the central nervous system (CNS) and by 3.8‐fold in the haemolymph. The injection of hydrogen peroxide also increases the mortality of experimental insects, whereas co‐injection of hydrogen peroxide with Pyrap‐AKH (40 pmol) reduces mortality to almost control levels. Importantly, an increase in haemolymph protein carbonyl levels (i.e. an oxidative stress biomarker) elicited by hydrogen peroxide is decreased by 3.6‐fold to control levels when hydrogen peroxide is co‐injected with Pyrap‐AKH. Similar results are obtained using in vitro experiments. Oxidative stress biomarkers such as malondialdehyde and protein carbonyls are significantly enhanced upon exposure of the isolated CNS to hydrogen peroxide in vitro, whereas co‐treatment of the CNS with hydrogen peroxide and Pyrap‐AKH reduces levels significantly. Moreover, a marked decrease in catalase activity compared with controls is recorded when the CNS is incubated with hydrogen peroxide. Incubation of the CNS with hydrogen peroxide and Pyrap‐AKH together curbs the negative effect on catalase activity. Taken together, the results of the present study provide strong support for the recently published data on the feedback regulation between oxidative stressors and AKH action, and implicate AKH in counteracting oxidative stress. The in vitro experiments should facilitate research on the mode of action of AKH in relation to oxidative stress, and could help clarify the key pathways involved in this process.
Journal of Insect Physiology | 2014
Konstantin Vinokurov; Andrea Bednářová; Aleš Tomčala; Tereza Stašková; Natraj Krishnan; Dalibor Kodrík
The effect of adipokinetic hormone (Pyrap-AKH) in stimulating the function of insect salivary glands (SGs) in extra-oral digestive processes was studied in the firebug, Pyrrhocoris apterus L. (Heteroptera). The analyses were performed on samples of SGs and extracts of linden seeds, a natural source of the bugs food. The SGs from 3-day old P. apterus females (when the food ingestion culminates), primarily contained polygalacturonase (PG) enzyme activity, whereas the level of lipase, peptidase, amylase and α-glucosidase was negligible. The transcription of PG mRNA and enzymatic activity were significantly increased in SGs after Pyrap-AKH treatment. The piercing and sucking of linden seeds by the bugs stimulated the intrinsic enzymatic cocktail of seeds (lipase, peptidase, amylase, glucosidase), and moreover the activity of these enzymes was significantly enhanced when the seeds were fed on by the Pyrap-AKH treated bugs. Similarly, a significant increase in PG activity was recorded in linden seeds fed on by hormonally-treated bugs or when injected by SG extract from hormonally treated ones as compared to untreated controls. The mechanism of AKH action in SGs is unknown, but likely involves cAMP (and excludes cGMP) as a second messenger, since the content of this compound doubled in SGs after Pyrap-AKH treatment. This new and as yet undescribed function of AKH in SGs is compared with the effect of this hormone on digestive processes in the midgut elucidated earlier.
Journal of Insect Physiology | 2015
Marley E. Hanna; Andrea Bednářová; Kuntol Rakshit; Anathbandhu Chaudhuri; Janis M. O’Donnell; Natraj Krishnan
The impact of mutations in four essential genes involved in dopamine (DA) synthesis and transport on longevity, motor behavior, and resistance to oxidative stress was monitored in Drosophila melanogaster. The fly lines used for this study were: (i) a loss of function mutation in Catecholamines up (Catsup(26)), which is a negative regulator of the rate limiting enzyme for DA synthesis, (ii) a mutant for the gene pale (ple(2)) that encodes for the rate limiting enzyme tyrosine hydroxylase (TH), (iii) a mutant for the gene Punch (Pu(Z22)) that encodes guanosine triphosphate cyclohydrolase, required for TH activity, and (iv) a mutant in the vesicular monoamine transporter (VMAT(Δ14)), which is required for packaging of DA as vesicles inside DA neurons. Median lifespans of ple(2), Pu(Z22) and VMAT(Δ14) mutants were significantly decreased compared to Catsup(26) and wild type controls that did not significantly differ between each other. Catsup(26) flies survived longer when exposed to hydrogen peroxide (80 μM) or paraquat (10mM) compared to ple(2), Pu(Z22) or VMAT(Δ14) and controls. These flies also exhibited significantly higher negative geotaxis activity compared to ple(2), Pu(Z22), VMAT(Δ14) and controls. All mutant flies demonstrated rhythmic circadian locomotor activity in general, albeit Catsup(26) and VMAT(Δ14) flies had slightly weaker rhythms. Expression analysis of some key antioxidant genes revealed that glutathione S-transferase Omega-1 (GSTO1) expression was significantly up-regulated in all DA synthesis pathway mutants and especially in Catsup(26) and VMAT(Δ14) flies at both mRNA and protein levels. Taken together, we hypothesize that DA could directly influence GSTO1 transcription and thus play a significant role in the regulation of response to oxidative stress. Additionally, perturbations in DA synthesis do not appear to have a significant impact on circadian locomotor activity rhythms per se, but do have an influence on general locomotor activity levels.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2015
Andrea Bednářová; Dalibor Kodrík; Natraj Krishnan
Insect adipokinetic hormones (AKHs) are pleiotropic hormones known to play a protective role in response to oxidative stress (OS). However, the precise signaling pathways are unclear. We present evidence that AKH may primarily employ the Forkhead box class O transcription factor (FoxO) to exert this effect. The impact of knocking down AKH synthesis or its over-expression in its response to OS was studied in Drosophila melanogaster. AKH knockdown (AKH-RNAi) as well as AKH overexpression (AKH-oex) was achieved using the Gal-4/UAS system and controls were w(1118) (+/+), AKH-Gal4/+, UAS-AKH/+ and UAS-AKH-RNAi/+. Exposure to 80 μM hydrogen peroxide (HP) revealed that AKH-RNAi flies showed significantly higher mortality than AKH-oex or the respective control lines. This susceptibility was evidenced by significantly enhanced levels of protein carbonyls - a biomarker of OS, in AKH-RNAi flies compared to controls and AKH-oex flies. Interestingly, AKH-oex flies had the least amount of protein carbonyls. AKH-RNAi flies had significantly less dFoxO transcript and translated protein compared to control and AKH-oex flies in un-challenged condition as well as when challenged with HP. Sestrin - a major antioxidant defense protein and one of the targets of dFoxO - was also significantly down-regulated (both at mRNA and protein level) in AKH-RNAi flies (both unchallenged and challenged with HP) compared to control flies and flies with over-expressed AKH. These findings imply that dFoxO may act downstream of AKH as a transcription factor to mediate response to OS in D. melanogaster.
Frontiers in Molecular Neuroscience | 2017
Andrea Bednářová; Marley E. Hanna; Isabella Durham; Tara VanCleave; Alexis England; Anathbandhu Chaudhuri; Natraj Krishnan
Transfer RNAs (tRNAs) are key molecules participating in protein synthesis. To augment their functionality they undergo extensive post-transcriptional modifications and, as such, are subject to regulation at multiple levels including transcription, transcript processing, localization and ribonucleoside base modification. Post-transcriptional enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and influences specific anticodon–codon interactions and regulates translation, its efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable and results in a rich structural diversity of tRNA of which over 100 modified nucleosides have been characterized. Most often these hypermodified nucleosides are found in the wobble position of tRNAs, where they play a direct role in codon recognition as well as in maintaining translational efficiency and fidelity, etc. Several recent studies have pointed to a link between defects in tRNA modifications and human diseases including neurological disorders. Therefore, defects in tRNA modifications in humans need intensive characterization at the enzymatic and mechanistic level in order to pave the way to understand how lack of such modifications are associated with neurological disorders with the ultimate goal of gaining insights into therapeutic interventions.
PLOS ONE | 2016
Kurt C. Showmaker; Andrea Bednářová; Cathy Gresham; Chuan-Yu Hsu; Daniel G. Peterson; Natraj Krishnan
The tarnished plant bug (TPB), Lygus lineolaris (Palisot de Beauvois) is a polyphagous, phytophagous insect that has emerged as a major pest of cotton, alfalfa, fruits, and vegetable crops in the eastern United States and Canada. Using its piercing-sucking mouthparts, TPB employs a “lacerate and flush” feeding strategy in which saliva injected into plant tissue degrades cell wall components and lyses cells whose contents are subsequently imbibed by the TPB. It is known that a major component of TPB saliva is the polygalacturonase enzymes that degrade the pectin in the cell walls. However, not much is known about the other components of the saliva of this important pest. In this study, we explored the salivary gland transcriptome of TPB using Illumina sequencing. After in silico conversion of RNA sequences into corresponding polypeptides, 25,767 putative proteins were discovered. Of these, 19,540 (78.83%) showed significant similarity to known proteins in the either the NCBI nr or Uniprot databases. Gene ontology (GO) terms were assigned to 7,512 proteins, and 791 proteins in the sialotranscriptome of TPB were found to collectively map to 107 Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. A total of 3,653 Pfam domains were identified in 10,421 sialotranscriptome predicted proteins resulting in 12,814 Pfam annotations; some proteins had more than one Pfam domain. Functional annotation revealed a number of salivary gland proteins that potentially facilitate degradation of host plant tissues and mitigation of the host plant defense response. These transcripts/proteins and their potential roles in TPB establishment are described.
International Journal of Molecular Sciences | 2013
Andrea Bednářová; Dalibor Kodrík; Natraj Krishnan
Circadian rhythms are found in almost all organisms from cyanobacteria to humans, where most behavioral and physiological processes occur over a period of approximately 24 h in tandem with the day/night cycles. In general, these rhythmic processes are under regulation of circadian clocks. The role of circadian clocks in regulating metabolism and consequently cellular and metabolic homeostasis is an intensively investigated area of research. However, the links between circadian clocks and aging are correlative and only recently being investigated. A physiological decline in most processes is associated with advancing age, and occurs at the onset of maturity and in some instances is the result of accumulation of cellular damage beyond a critical level. A fully functional circadian clock would be vital to timing events in general metabolism, thus contributing to metabolic health and to ensure an increased “health-span” during the process of aging. Here, we present recent evidence of links between clocks, cellular metabolism, aging and oxidative stress (one of the causative factors of aging). In the light of these data, we arrive at conceptual generalizations of this relationship across the spectrum of model organisms from fruit flies to mammals.
Apidologie | 2014
Oskar Wasielewski; Dawid Szczepankiewicz; Karol Giejdasz; Tatiana Wojciechowicz; Andrea Bednářová; Natraj Krishnan
The presence and potential role of adiponectin- and resistin-like peptides in mobilizing free lipids of hemolymph during over-wintering was studied in females of the European solitary red mason bee Osmia bicornis L. (Hymenoptera: Megachilidae). The levels of both peptides (as demonstrated both by RIA/ELISA and Western blots) were highest in fat body tissue homogenates during early pre-wintering (September) followed by a gradual and significant decline during wintering and post-wintering months (November–March). There was a gradual reduction of the lipid levels in hemolymph and adiponectin-like and resistin-like peptide content in fat body. Thus, the total lipid content in hemolymph and the adiponectin-like and resistin-like peptides in fat body homogenates was positively correlated. Our experiments also demonstrated that injections of various concentrations of fat body extracts as well as various doses of adiponectin and resistin increased the lipid levels in hemolymph in O. bicornis females at the three different periods of over-wintering time. In particular, injections of fat body extract and adiponectin resulted in the strongest mobilization of lipids especially in the first two periods of over-wintering: pre-wintering and wintering. Resistin also elicited an increase of lipid levels in hemolymph, but its effectiveness was lower compared to fat body extract and adiponectin. Taken together, our results strongly suggest the presence of adiponectin-like and resistin-like peptides in the fat body of O. bicornis and postulate a dynamic physiological role for these peptides during the process of over-wintering.