Andréa C. LeBlanc
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Andréa C. LeBlanc.
Journal of Cell Biology | 2002
Yan Zhang; Richard McLaughlin; Cynthia G. Goodyer; Andréa C. LeBlanc
Extracellular amyloid β peptides (Aβs) have long been thought to be a primary cause of Alzheimers disease (AD). Now, detection of intracellular neuronal Aβ1–42 accumulation before extracellular Aβ deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Aβ is toxic to human neurons. Microinjections of Aβ1–42 peptide or a cDNA-expressing cytosolic Aβ1–42 rapidly induces cell death of primary human neurons. In contrast, Aβ1–40, Aβ40–1, or Aβ42–1 peptides, and cDNAs expressing cytosolic Aβ1–40 or secreted Aβ1–42 and Aβ1–40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Aβ1–42 peptides is neurotoxic. The nonfibrillized and fibrillized Aβ1–42 peptides are equally toxic. In contrast, Aβ1–42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Aβ1–42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Aβ1–42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Aβ1–42 is selectively cytotoxic to human neurons through the p53–Bax cell death pathway.
Journal of Biological Chemistry | 2001
Younes Bounhar; Yan Zhang; Cynthia G. Goodyer; Andréa C. LeBlanc
The function of the cellular prion protein (PrP) is still poorly understood. We present here an unprecedented role for PrP against Bax-mediated neuronal apoptosis and show that PrP potently inhibits Bax-induced cell death in human primary neurons. Deletion of four octapeptide repeats of PrP (PrPΔOR) and familial D178N and T183A PrP mutations completely or partially eliminate the neuroprotective effect of PrP. PrP remains anti-apoptotic despite truncation of the glycosylphosphatidylinositol (GPI) anchor signal peptide, indicating that the neuroprotective form of PrP does not require the abundant cell surface GPI-anchored PrP. Our results implicate PrP as a potent and novel anti-apoptotic protein against Bax-mediated cell death.
Journal of Biological Chemistry | 1999
Andréa C. LeBlanc; Hui Liu; Cynthia G. Goodyer; Jennifer Hammond
Neuronal cell death, neurofibrillary tangles, and amyloid β peptide (Aβ) deposition depict Alzheimer’s disease (AD) pathology, but neuronal loss correlates best with dementia. We have shown that increased production of Aβ is a consequence of neuronal apoptosis, suggesting that apoptosis activates proteases involved in amyloid precursor protein (APP) processing. Here, we investigate key effectors of cell death, caspases, in human neuronal apoptosis and APP processing. We find that caspase-6 is activated and responsible for neuronal apoptosis by serum deprivation. Caspase-6 activity precedes the time of commitment to neuronal apoptosis by 10 h, indicating possible activity without subsequent apoptosis. Inhibition of caspase-6 activity prevents serum deprivation-mediated increase of Aβ. Caspase-6 directly cleaves APP at the C terminus and generates a C-terminal fragment of 3 kDa (Capp3) and an Aβ-containing 6.5-kDa fragment, Capp6.5, that increases in serum-deprived neurons. A pulse-chase experiment reveals a precursor-product relationship between Capp6.5, intracellular Aβ, and secreted Aβ, indicating a potential alternate amyloidogenic pathway. Caspase-6 proenzyme is present in adult human brain tissue, and the p10 active caspase-6 fragment is detected in AD brain tissue. These results indicate a possible alternate pathway for APP amyloidogenic processing in human neurons and a potential implication for this pathway in the neuronal demise of AD.
American Journal of Pathology | 2004
Huishan Guo; Steffen Albrecht; Martine Bourdeau; Tracy Petzke; Catherine Bergeron; Andréa C. LeBlanc
Previously, we have shown that caspase-6 but not caspase-3 is activated by serum deprivation and induces a protracted cell death in primary cultures of human neurons (LeBlanc AC, Liu H, Goodyer C, Bergeron C, Hammond J: Caspase-6 role in apoptosis of human neurons, amyloidogenesis and Alzheimers disease. J Biol Chem 1999, 274:23426-23436 and Zhang Y, Goodyer C, LeBlanc A: Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3, -6, -7, and -8. J Neurosci 2000, 20:8384-8389). Here, we show with neoepitope antibodies that the p20 subunit of active caspase-6 increases twofold to threefold in the affected temporal and frontal cortex but not in the unaffected cerebellum of Alzheimers disease brains and is present in neurofibrillary tangles, neuropil threads, and the neuritic plaques. Furthermore, a neoepitope antibody to caspase-6-cleaved Tau strongly detects intracellular tangles, extracellular tangles, pretangles, neuropil threads, and neuritic plaques. Immunoreactivity with both antibodies in pretangles indicates that the caspase-6 is active early in the pathogenesis of Alzheimers disease. In contrast to the nuclear and cytosolic localization of active caspase-6 in apoptotic neurons of fetal and adult ischemic brains, the active caspase-6 in Alzheimers disease brains is sequestered into the tangles or neurites. The localization of active caspase-6 may strongly jeopardize the structural integrity of the neuronal cytoskeletal system leading to inescapable neuronal dysfunction and eventual cell death in Alzheimers disease neurons. Our results suggest that active caspase-6 is strongly implicated in human neuronal degeneration and apoptosis.
Journal of Biological Chemistry | 2003
Xavier Roucou; Qi Guo; Yan Zhang; Cynthia G. Goodyer; Andréa C. LeBlanc
Recently, it was observed that reverse-translocated cytosolic PrP and PrP expressed in the cytosol induce rapid death in neurons (Ma, J., Wollmann, R., and Lindquist, S. (2002) Science 298, 1781–1785). In this study, we investigated whether accumulation of prion protein (PrP) in the cytosol is toxic to human neurons in primary culture. We show that in these neurons, a single PrP isoform lacking signal peptide accumulates in the cytosol of neurons treated with epoxomicin, a specific proteasome inhibitor. Therefore, endogenously expressed PrP is subject to the endoplasmic reticulum-associated degradation (ERAD) pathway and is degraded by the proteasome in human primary neurons. In contrast to its toxicity in N2a cells, reverse-translocated PrP (ERAD-PrP) is not toxic even when neurons are microinjected with cDNA constructs to overexpress either wild-type PrP or mutant PrPD178N. We found that ERAD-PrP in human neurons remains detergentsoluble and proteinase K-sensitive, in contrast to its detergent-insoluble and proteinase K-resistant state in N2a cells. Furthermore, not only is microinjection of a cDNA construct expressing CyPrP not toxic, it protects these neurons against Bax-mediated cell death. We conclude that in human neurons, ERAD-PrP is not converted naturally into a form reminiscent of scrapie PrP and that PrP located in the cytosol retains its protective function against Bax. Thus, it is unlikely that simple accumulation of PrP in the cytosol can cause neurodegeneration in prion diseases.
Journal of Neuroscience Research | 2004
Xavier Roucou; Malcolm J. Gains; Andréa C. LeBlanc
The normal function of prion protein (PrP) is usually disregarded at the expense of the more fascinating role of PrP in transmissible prion diseases. However, the normal PrP may play an important role in cellular function in the central nervous system, since PrP is highly expressed in neurons and motifs in the sequence of PrP are conserved in evolution. The finding that prion null mice do not have a significant overt phenotype suggests that the normal function of PrP is of minor importance. However, the absence of PrP in cells or in vivo contributes to an increased susceptibility to oxidative stress or apoptosis‐inducing insults. An alternative explanation is that the PrP normal function is so important that it is redundant. Probing into the characteristics of PrP has revealed a number of features that could mediate important cellular functions. The neuroprotective actions so far identified with PrP are initiated through cell surface signaling, antioxidant activity, or anti‐Bax function. Here, we review the characteristics of the PrP and the evidence that PrP protects against neurodegeneration and neuronal cell death.
Journal of Molecular Medicine | 2005
Xavier Roucou; Andréa C. LeBlanc
Prion protein can display two conformations: a normal cellular conformation (PrP) and a pathological conformation associated with prion diseases (PrPSc). Three complementary strategies are used by researchers investigating how PrP is involved in the pathogenesis of prion diseases: elucidation of the normal function of PrP, determination of how PrPSc is toxic to neurons, and unraveling the mechanism for the conversion of PrP to PrPSc. We review the normal function of PrP as an antioxidant and an antiapoptotic protein in vivo and in vitro. This review also addresses contrasting evidence that PrP is cytotoxic. Finally, we discuss the implication of the neuroprotective role of PrP in prion diseases.
Cell Death & Differentiation | 2005
X Roucou; P N Giannopoulos; Yan Zhang; J Jodoin; C G Goodyer; Andréa C. LeBlanc
Prion protein (PrP) prevents Bcl-2-associated protein X (Bax)-mediated cell death, but the step at which PrP inhibits is not known. We first show that PrP is very specific for Bax and cannot prevent Bak (Bcl-2 antagonist killer 1)-, tBid-, staurosporine- or thapsigargin-mediated cell death. As Bax activation involves Bax conformational change, mitochondrial translocation, cytochrome c release and caspase activation, we investigated which of these events was inhibited by PrP. PrP inhibits Bax conformational change, cytochrome c release and cell death in human primary neurons and MCF-7 cells. Serum deprivation-induced Bax conformational change is more rapid in PrP-null cells. PrP does not prevent active caspase-mediated cell death. PrP does not colocalize with Bax in normal or apoptotic primary neurons and cannot prevent Bax-mediated cytochrome c release in a mitochondrial cell-free system. We conclude that PrP protects against Bax-mediated cell death by preventing the Bax proapoptotic conformational change that occurs initially in Bax activation.
The Journal of Neuroscience | 2004
Yan Zhang; Nathalie Champagne; Lenore K. Beitel; Cynthia G. Goodyer; Mark Trifiro; Andréa C. LeBlanc
Intracellular amyloidβ peptide (iAβ1-42) accumulates in the Alzheimers disease brain before plaque and tangle formation (Gouras et al., 2000) and is extremely toxic to human neurons (Zhang et al., 2002). Here, we investigated whether androgen and estrogen could prevent iAβ1-42 toxicity, because both these hormones have a wide range of neuroprotective actions. At physiological concentrations, 17-β-estradiol, testosterone, and methyl testosterone reduce iAβ1-42-induced cell death by 50% in neurons treated after the injection and by 80-90% in neurons treated 1 hr before the injection. The neuroprotective action of the hormones is mediated by receptors, because the estrogen receptor (ER) antagonist tamoxifen and the androgen receptor (AR) antagonist flutamide completely block the estrogen- and androgen-mediated neuroprotection, respectively. Transcriptional activity is required for the neuroprotective action, because dominant negative forms of the receptors that block the transcriptional activity of the ER and AR prevent estrogen- and androgen-mediated neuroprotection. Proteomics followed by Western blot analyses identified increased levels of heat shock protein 70 (Hsp70) in testosterone- and estrogen-treated human neurons. Comicroinjection of Hsp70 with the iAβ1-42 blocks the toxicity of iAβ1-42. We conclude that estrogen and androgens protect human neurons against iAβ1-42 toxicity by increasing the levels of Hsp70 in the neurons.
Molecular & Cellular Proteomics | 2008
Guy Klaiman; Tracy Petzke; Jennifer Hammond; Andréa C. LeBlanc
Caspase-6 activation occurs early in Alzheimer disease and sometimes precedes the clinical manifestation of the disease in aged individuals. The active Caspase-6 is localized in neuritic plaques, in neuropil threads, and in neurofibrillary tangles containing neurons that are not morphologically apoptotic in nature. To investigate the potential consequences of the activation of Caspase-6 in neurons, we conducted a proteomics analysis of Caspase-6-mediated cleavage of human neuronal proteins. Proteins from the cytosolic and membrane subcellular compartments were treated with recombinant active Caspase-6 and compared with undigested proteins by two-dimensional gel electrophoresis. LC/MS/MS analyses of the proteins that were cleaved identified 24 different potential protein substrates. Of these, 40% were cytoskeleton or cytoskeleton-associated proteins. We focused on the cytoskeleton proteins because these are critical for neuronal structure and function. Caspase-6 cleavage of α-Tubulin, α-Actinin-4, Spinophilin, and Drebrin was confirmed. At least one Caspase-6 cleavage site was identified for Drebrin, Spinophilin, and α-Tubulin. A neoepitope antiserum to α-Tubulin cleaved by Caspase-6 immunostained neurons, neurofibrillary tangles, neuropil threads, and neuritic plaques in Alzheimer disease and co-localized with active Caspase-6. These results imply that the early and neuritic activation of Caspase-6 in Alzheimer disease could disrupt the cytoskeleton network of neurons, resulting in impaired neuronal structure and function in the absence of cell death. This study provides novel insights into the pathophysiology of Alzheimer disease.