Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Andrea Cerase is active.

Publication


Featured researches published by Andrea Cerase.


eLife | 2012

KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands

Anca M. Farcas; Neil P. Blackledge; Ian Sudbery; Hannah K. Long; Joanna F. McGouran; Nathan R. Rose; Sheena Lee; David Sims; Andrea Cerase; Thomas W. Sheahan; Haruhiko Koseki; Neil Brockdorff; Chris P. Ponting; Benedikt M. Kessler; Robert J. Klose

CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs. DOI: http://dx.doi.org/10.7554/eLife.00205.001


Epigenetics & Chromatin | 2014

Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci

Daniel Smeets; Yolanda Markaki; Volker J. Schmid; Felix Kraus; Anna Tattermusch; Andrea Cerase; Michael Sterr; Susanne Fiedler; Justin Demmerle; Jens Popken; Heinrich Leonhardt; Neil Brockdorff; Thomas Cremer; Lothar Schermelleh; Marion Cremer

BackgroundA Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs).ResultsWe demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion.Conclusions3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.


Cell Reports | 2015

A Pooled shRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing

Benoit Moindrot; Andrea Cerase; Heather Coker; Osamu Masui; Anne Grijzenhout; Greta Pintacuda; Lothar Schermelleh; Tatyana B. Nesterova; Neil Brockdorff

Summary X-chromosome inactivation is the process that evolved in mammals to equalize levels of X-linked gene expression in XX females relative to XY males. Silencing of a single X chromosome in female cells is mediated by the non-coding RNA Xist. Although progress has been made toward identifying factors that function in the maintenance of X inactivation, the primary silencing factors are largely undefined. We developed an shRNA screening strategy to produce a ranked list of candidate primary silencing factors. Validation experiments performed on several of the top hits identified the SPOC domain RNA binding proteins Rbm15 and Spen and Wtap, a component of the m6A RNA methyltransferase complex, as playing an important role in the establishment of Xist-mediated silencing. Localization analysis using super-resolution 3D-SIM microscopy demonstrates that these factors co-localize with Xist RNA within the nuclear matrix subcompartment, consistent with a direct interaction.


Development | 2011

Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells

Miguel Casanova; Tanja S. Preissner; Andrea Cerase; Raymond A. Poot; Daisuke Yamada; Xiangzhi Li; Ruth Appanah; Karel Bezstarosti; Jeroen Demmers; Haruhiko Koseki; Neil Brockdorff

Polycomb group (PcG) proteins play an important role in the control of developmental gene expression in higher organisms. In mammalian systems, PcG proteins participate in the control of pluripotency, cell fate, cell cycle regulation, X chromosome inactivation and parental imprinting. In this study we have analysed the function of the mouse PcG protein polycomblike 2 (Pcl2), one of three homologues of the Drosophila Polycomblike (Pcl) protein. We show that Pcl2 is expressed at high levels during early embryogenesis and in embryonic stem (ES) cells. At the biochemical level, Pcl2 interacts with core components of the histone H3K27 methyltransferase complex Polycomb repressive complex 2 (PRC2), to form a distinct substoichiometric biochemical complex, Pcl2-PRC2. Functional analysis using RNAi knockdown demonstrates that Pcl2-PRC2 facilitates both PRC2 recruitment to the inactive X chromosome in differentiating XX ES cells and PRC2 recruitment to target genes in undifferentiated ES cells. The role of Pcl2 in PRC2 targeting in ES cells is critically dependent on a conserved PHD finger domain, suggesting that Pcl2 might function through the recognition of a specific chromatin configuration.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy

Andrea Cerase; Daniel Smeets; Y. Amy Tang; Michal R. Gdula; Felix Kraus; Mikhail Spivakov; Benoit Moindrot; Marion Leleu; Anna Tattermusch; Justin Demmerle; Tatyana B. Nesterova; Catherine M. Green; Arie P. Otte; Lothar Schermelleh; Neil Brockdorff

Significance Polycomb repressor proteins are recruited to the inactive X chromosome in mammals, and this has been attributed to a biochemical interaction between the non–protein-coding RNA X-inactive specific transcript (Xist), which initiates the X inactivation process, and core polycomb subunits. We have studied this using a combination of genome mapping analysis and 3D structured illumination microscopy (3D-SIM) that allows 3D imaging with eightfold volumetric resolution improvement compared with previous state-of-the-art confocal microscopy. Our findings reveal that Xist-mediated recruitment of polycomb repressors does not correlate well with gene silencing and, moreover, that using 3D-SIM, polycomb proteins and Xist RNA show significant spatial separation. These observations challenge prevailing models and prompt a reappraisal of the role of Xist RNA in polycomb recruitment. In female mammals, one of the two X chromosomes is transcriptionally silenced to equalize X-linked gene dosage relative to XY males, a process termed X chromosome inactivation. Mechanistically, this is thought to occur via directed recruitment of chromatin modifying factors by the master regulator, X-inactive specific transcript (Xist) RNA, which localizes in cis along the entire length of the chromosome. A well-studied example is the recruitment of polycomb repressive complex 2 (PRC2), for which there is evidence of a direct interaction involving the PRC2 proteins Enhancer of zeste 2 (Ezh2) and Supressor of zeste 12 (Suz12) and the A-repeat region located at the 5′ end of Xist RNA. In this study, we have analyzed Xist-mediated recruitment of PRC2 using two approaches, microarray-based epigenomic mapping and superresolution 3D structured illumination microscopy. Making use of an ES cell line carrying an inducible Xist transgene located on mouse chromosome 17, we show that 24 h after synchronous induction of Xist expression, acquired PRC2 binding sites map predominantly to gene-rich regions, notably within gene bodies. Paradoxically, these new sites of PRC2 deposition do not correlate with Xist-mediated gene silencing. The 3D structured illumination microscopy was performed to assess the relative localization of PRC2 proteins and Xist RNA. Unexpectedly, we observed significant spatial separation and absence of colocalization both in the inducible Xist transgene ES cell line and in normal XX somatic cells. Our observations argue against direct interaction between Xist RNA and PRC2 proteins and, as such, prompt a reappraisal of the mechanism for PRC2 recruitment in X chromosome inactivation.


Science | 2016

Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing

Chun-Kan Chen; Mario Blanco; Constanza Jackson; Erik Aznauryan; Noah Ollikainen; Christine Surka; Amy Chow; Andrea Cerase; Patrick McDonel; Mitchell Guttman

Plunging into a domain of silence Female mammals have two X chromosomes. One must be silenced to “balance” gene dosage with male XY cells. The Xist long noncoding RNA coats the inactive X chromosome in female mammalian cells. Chen et al. show that the Xist RNA helps recruit the X chromosome to the internal rim of the cell nucleus, a region where gene expression is silenced. Xist is recruited to the domain through an interaction with the Lamin B receptor. This recruitment allows the Xist RNA to spread across the future inactive X chromosome, shutting down gene expression. Science, this issue p. 468 A noncoding RNA recruits the X chromosome to the nuclear periphery, spreading across the chromosome and silencing gene expression. The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.


Epigenetics & Chromatin | 2010

Efficiency of Xist-mediated silencing on autosomes is linked to chromosomal domain organisation.

Y. Amy Tang; Derek Huntley; Giovanni Montana; Andrea Cerase; Tatyana B. Nesterova; Neil Brockdorff

BackgroundX chromosome inactivation, the mechanism used by mammals to equalise dosage of X-linked genes in XX females relative to XY males, is triggered by chromosome-wide localisation of a cis-acting non-coding RNA, Xist. The mechanism of Xist RNA spreading and Xist-dependent silencing is poorly understood. A large body of evidence indicates that silencing is more efficient on the X chromosome than on autosomes, leading to the idea that the X chromosome has acquired sequences that facilitate propagation of silencing. LINE-1 (L1) repeats are relatively enriched on the X chromosome and have been proposed as candidates for these sequences. To determine the requirements for efficient silencing we have analysed the relationship of chromosome features, including L1 repeats, and the extent of silencing in cell lines carrying inducible Xist transgenes located on one of three different autosomes.ResultsOur results show that the organisation of the chromosome into large gene-rich and L1-rich domains is a key determinant of silencing efficiency. Specifically genes located in large gene-rich domains with low L1 density are relatively resistant to Xist-mediated silencing whereas genes located in gene-poor domains with high L1 density are silenced more efficiently. These effects are observed shortly after induction of Xist RNA expression, suggesting that chromosomal domain organisation influences establishment rather than long-term maintenance of silencing. The X chromosome and some autosomes have only small gene-rich L1-depleted domains and we suggest that this could confer the capacity for relatively efficient chromosome-wide silencing.ConclusionsThis study provides insight into the requirements for efficient Xist mediated silencing and specifically identifies organisation of the chromosome into gene-rich L1-depleted and gene-poor L1-dense domains as a major influence on the ability of Xist-mediated silencing to be propagated in a continuous manner in cis.


Science | 2017

PCGF3/5–PRC1 initiates Polycomb recruitment in X chromosome inactivation

Mafalda Almeida; Greta Pintacuda; Osamu Masui; Michal R. Gdula; Andrea Cerase; David Brown; Arne W. Mould; Cassandravictoria Innocent; Manabu Nakayama; Lothar Schermelleh; Tatyana B. Nesterova; Haruhiko Koseki; Neil Brockdorff

Polycomb steps to inactivate X XX females silence one of their X chromosomes. This involves a process whereby a noncoding RNA known as Xist coats one of the X chromosomes and recruits chromatin silencing factors. The Polycomb complexes PRC1 and PRC2 are also known to be involved in X chromosome inactivation. Almeida et al. elucidate a key role of a specific complex, PCGF3/5-PRC1, in initiating Polycomb recruitment by Xist RNA. They further demonstrate that Polycomb recruitment is critical for Xist-mediated chromosome silencing and female embryogenesis. Science, this issue p. 1081 Polycomb recruitment in X inactivation is redefined with PRC1 initiating PRC2 recruitment in response to Xist RNA expression. Recruitment of the Polycomb repressive complexes PRC1 and PRC2 by Xist RNA is an important paradigm for chromatin regulation by long noncoding RNAs. Here, we show that the noncanonical Polycomb group RING finger 3/5 (PCGF3/5)–PRC1 complex initiates recruitment of both PRC1 and PRC2 in response to Xist RNA expression. PCGF3/5–PRC1–mediated ubiquitylation of histone H2A signals recruitment of other noncanonical PRC1 complexes and of PRC2, the latter leading to deposition of histone H3 lysine 27 methylation chromosome-wide. Pcgf3/5 gene knockout results in female-specific embryo lethality and abrogates Xist-mediated gene repression, highlighting a key role for Polycomb in Xist-dependent chromosome silencing. Our findings overturn existing models for Polycomb recruitment by Xist RNA and establish precedence for H2AK119u1 in initiating Polycomb domain formation in a physiological context.


Nature Methods | 2017

Quantitative predictions of protein interactions with long noncoding RNAs

Davide Cirillo; Mario Blanco; Alexandros Armaos; Andreas Buness; Philip Avner; Mitchell Guttman; Andrea Cerase; Gian Gaetano Tartaglia

Long noncoding RNAs (lncRNAs, which comprise 68% of the human transcriptome with average length of 1,000 nt) interact with various RNA-binding proteins (RBPs) to mediate cellular functions1. Identification of lncRNA interactions through experimental methods is challenging and can be complemented by the use of computational models to predict protein partners. Yet it is currently impractical to calculate RBP–lncRNA interactions for large transcripts2.We introduce Global Score as a means to predict protein interactions with large RNAs (http://service.tartaglialab.com/new_submission/globalscore).


Molecular Cell | 2017

hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to Establish Polycomb-Mediated Chromosomal Silencing

Greta Pintacuda; Guifeng Wei; Chloë Roustan; Burcu Anil Kirmizitas; Nicolae Solcan; Andrea Cerase; Alfredo Castello; Shabaz Mohammed; Benoit Moindrot; Tatyana B. Nesterova; Neil Brockdorff

Summary The Polycomb-repressive complexes PRC1 and PRC2 play a key role in chromosome silencing induced by the non-coding RNA Xist. Polycomb recruitment is initiated by the PCGF3/5-PRC1 complex, which catalyzes chromosome-wide H2A lysine 119 ubiquitylation, signaling recruitment of other PRC1 complexes, and PRC2. However, the molecular mechanism for PCGF3/5-PRC1 recruitment by Xist RNA is not understood. Here we define the Xist RNA Polycomb Interaction Domain (XR-PID), a 600 nt sequence encompassing the Xist B-repeat element. Deletion of XR-PID abolishes Xist-dependent Polycomb recruitment, in turn abrogating Xist-mediated gene silencing and reversing Xist-induced chromatin inaccessibility. We identify the RNA-binding protein hnRNPK as the principal XR-PID binding factor required to recruit PCGF3/5-PRC1. Accordingly, synthetically tethering hnRNPK to Xist RNA lacking XR-PID is sufficient for Xist-dependent Polycomb recruitment. Our findings define a key pathway for Polycomb recruitment by Xist RNA, providing important insights into mechanisms of chromatin modification by non-coding RNA.

Collaboration


Dive into the Andrea Cerase's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge